

Digitized by the Internet Archive in 2016

TREATISE

OFTHE

AnimalOeconomy.

B Y

Bryan Robinson, M. D.

$D U B L I N:$

Printed by and for George Griersong at the Two Bibles in $E \int e x-S t r e e t$,

M,DCc, XXXII.

(iii)

PREFACE.

N the following Treatise I have avoided Hypothees, and explained the Laws which obtain in Human Bodies by Reafon and Experiments. Hypothees, of whatever Nature, are not to be admitted in Pbilofophy. Norse whatever is not deduced from the Ph a nomena, is to be called an Hypo-t thetis.

Harvey from Experiments and $O b$ Servationstraced out the Circular Mo- $^{-}$ tron of the Blood. After bim Lower a 2
made
made fome farther $D i f c o v e r i e s ~ c o n-~$ cerning that Motion, and the Caufes by which it may be difturbed. After these great Men, the Knowledge of the Animal Oeconomy received no very confiderable Improvement, till Sir Ifaac Newton difcovered the CauSes of Mufcular Motion, and Secretion; and likewife furnifhed Materials for explaining Digeftion, Nutrition, and Refpiration. To Him I am chiefly indebted for what I have delivered on thofe Heads.

$$
\text { (} \mathrm{I} \text {) }
$$

$$
\begin{gathered}
\text { TREATS A TH. } \\
\text { Animal Oeconomy. }
\end{gathered}
$$

N this Treatife I hall give an Account of the principal Parts of the Animal Oeconomy; which I fall explain, not by Hypothefes, but by Reafon and Experiments. The Parts I hall treat of, are $M u f{ }_{c u l a r} M_{0}$ tron, the Motion of the Blood, ReSpiration, Digefion and Nutrition, A Secretion,

2
 A Treatise of the

Secretion, and the Discharges of Wuman Bodies.

In order to explain the Motion of the Blood, I hall premife an Account of the Motion of Fluids throw Cylindrical Pipes, and prove the Properties of that Motion by Experiments.

$00900300060 \operatorname{cosenccose}$

SECTION I.

Of the Motion of Fluids through Crlindrical Pipes.

Propofition I.

IF a Fid be moved through a $C y$ lindrical Pipe made of a given Sort of Matter, by a Force acting confaintly and uniformly during the whole Time of the Motion; its Velocity, Setting afide the Refinance of the Air, will be in a Ratio compounded of the fubduplicate Ratio of the moving Force directly, and the fibduplicate Ratios

Animal OEconomy. 3

of the Diameter and Liength of the Pipe taken together inverfly. If F denote the moving Force, D and L the Diameter and Length of the Pipe; I fay, that V will be proportional to $\sqrt{\mathrm{F}}$.

For the whole Motion of the Fluid flowing thro' the Pipe will, like all other Motions, be meafured by the Quantity of Matter moved and its Velocity taken together. But the Quantity of Matter moved is in a Ratio compounded of the Ratios of the Quantity of Matter or Weight of Fluid contained in the Pipe, of the Velocity wherewith the Fluid flows through the Pipe, and of the Time of the Motion. For the Quantity of Matter or Weight of Fluid contained in the Pipe is oppofed to the moving Force during the whole Time of its Action, and muft be moved by it for every
$4 \quad$ A Treatije of the
indefinitely hort Cylinder of Fluid difcharged by the Pipe; that is, as often as there are phyfical Points in the Length of another Cylindrical Pipe of an equal Diameter with that thro' which the Fluid flows, and of fuch a Length as that it can juft contain the Quantity of Fluid difcharged in the Time of the Motion ; which Length being as the Velocity of the Fluid flowing through the Pipe and the Time of the Motion taken together; the Quantity of Matter moved will be in a Ratio compounded of the Ratios of the Quantity of Matter or Weight of Fluid contained in the Pipe, of the Velocity wherewith it flows thro' the Pipe, and of the Time of the Motion. And the whole Motion, which is as the Quantity of Matter moved and its Velocity taken together, will be in a Ratio compounded of the fimple Ratios of the Quanti-

Animal OEconomy. S

ty of Matter or Weight of Fluid contained in the Pipe, and of the Time of the Motion; and of the duplicate Ratio of the Velocity: Therefore, putting T for the Time of the Motion, the whole Motion will be as QTV ${ }^{2}$.

Setting afide the Refiftance of the Air, this Motion would be proportional to the moving Force and Time of its acting taken together; that is QTV^{2}. would be proportional to FT, if the internal Surface of the Pipe by Friction, or Attraction, or both did not act continually upon the Fluid moving through it, and caufe a Change in its Motion proportional to the Efficacy wherewith it acts; which Efficacy in a Pipe made of a given Sort of Matter is meafured by the Ratio of the internal Surface of the Pipe to the Quantity of Fluid contained in it; that is, by $D L$ applied to Q.

6 A Treatije of the
And by Confequence $\frac{Q T V^{2} D L}{Q}$ will be proportional to FT, and therefore V will be proportional to $\checkmark \frac{\mathrm{F}}{\mathrm{DL}}$.

Cor. I. If the moving Force and Diameter of the Pipe be both given; the Velocity, feting afide the Refiftance of the Air, will be in the inverfe fubduplicate Ratio of the Length of the Pipe. If F and D be given; V will be as $\frac{1}{\sqrt{L}}$.

Corr. If the moving Force be as the Quantity of Fluid contained in the Pipe; the Velocity, fating afide the Refiftance of the Air, will be in the fubduplicate Ratio of the Diameter of the Pipe and Denfity of the Fluid taken together. Putting Δ for the Denfity of the Fluid, if F be as $D^{2} L \Delta$; then V will be as $\sqrt{ } \mathrm{D} \Delta$.

Animal OEconomy. $\quad 7$

Cor. 3. If the moving Force be as the Quantity of Fluid contained in the Pipe, and the Denfity of the Fluid be given; the Velocity, fetting afide the Refiftance of the Air, will be in the fubduplicate Ratio of the Diameter of the Pipe. If F be as $D^{2} L \Delta$, and Δ be given; then V will be as $\cdot \sqrt{ }$.

Cor. 4. If the moving Force be proportional to the Square of the Diameter of the Pipe, and the Length of the Pipe be given; the Velocity, fetting afide the Refiftance of the Air, will be in the fubduplicate Ratio of the Diameter of the Pipe. If F be as D^{2}, and L be given; then V will be as $\sqrt{ } D$.

Cor. 5: If the moving Force be as the Square of the Diameter of the Pipe; the Velocity, fetting afide the Refiftance of the Air, will
be
$8 \quad$ A Treatise of the
be in a Ratio compounded of the fubduplicate Ratio of the Diameter of the Pipe directly, and the fabduplicate Ratio of its Length inverily. If F be as D^{2}; then will V be as $\sqrt{\mathrm{L}}$.

Cor. 6. If the moving Force be as the Capacity of the Pipe, if the Diameter of the Pipe be in the fabduplicate Ratio of its Length ; the Velocity, Retting afide the Refitane of the Air, will be in the fubquadruplicate Ratio of the Length of the Pipe. If F be as $D^{2} L$, and D be as $V L$; then will V be as $L^{\frac{1}{7}}$.

Cor. 7. The moving Force, ferting afide the Refiftance of the Air, will be in a Ratio compounded of the duplicate Ratio of the Velocity , and of the fimple Ratios of the Diameter and Length of the Pipe. F will be as $\mathrm{V}^{2} \mathrm{D}$ L.

Proof
?

Animal OEconomy.

600000900900000900300000

Proof by Experiments.

TO prove the Truth of this Propofition by Experiments, I procured feveral Cylindrical Pipes of Brals of different Diameters and Lengths, each of which Pipes had one End fitted to fcrew into the Side of a Veffel filled with Water at three different Diftances from its Top, namely at the Diftances of one Foot, two Feet, and four.Feet. The Veffel made for thefe Experiments was a fquare Wooden Veffel fomething above four Feet in Depth, and nine Inches of a London Foot in its internal Length and Breadth.

Before I give an Account of the Experiments, it will be neceffary to thew how to mealure the moving Forces and Velocities of Water flowing thro' Cylindrical Pipes frewed

10
ATreatije of the
into the Side of a Veffel filled with Water.

To meafure the moving Force of Water flowing through a Cylindrical Pipe fcrew'd into the Side of a Veffel filled with Water, we muft know the Area of the Top of the Water in the Veffel, the Area of the Orifice of the Pipe, the perpendicular Diftance of the Place of the Pipe's Infertion into the Side of the Veffel frem the Top of the Water, and the Situation of the Pipe with refpect to the Horizon.

Let the Area of the Top or upper Surface of the Water in the Veffel be called A, the Area of a Hole made in the Bottom or Side of the Veffel be called a, and the perpendicular Diftance of the Place of Infertion of the Pipe from the Top of the Water be called H ; and then, by prop. 36.lib.2. Princip. Newton, the Velocity of the Water flowing out

Animal OEconomy. it

of the Hole, fetting afide the Refiftance of the Air, will be equal to the Velocity which a heavy Body would acquire in falling perpendicularly and without Refiftance thro' the Space $\frac{A^{2} H}{A^{2}-a^{2}}$. And, by the fecond Corollary of the fame Propofition, the Force generating the whole Motion of the eflluent Water will be equal to the Weight of a Cylinder of Water whofe Bafe is $\frac{12}{17}$ parts of the Area of the Hole or a, and whofe Height is $\frac{2 A^{2} H}{A^{2}-a^{2}}$. If the Area of the Hole be exceedingly fmall when compared with the Area of the upper Surface of the Water ; that is, if a be exceeding fmall when compared with A; the Height $\frac{2 A^{2} H}{A^{3}-a^{2}}$ will be very nearly equal to 2 H ; and by Confequence the Force generating the whole Motion of the effuent Water will be very nearly equal to

$$
\mathrm{B}_{2} \quad 1 \text { the }
$$

the Weight of a Cylinder of Water whofe Bafe is $\frac{12}{17}$ a, and whofe Height is 2 H ; that is very nearly equal to the Weight of the Cylinder $\frac{{ }^{24}}{57}$ a H: But the Weight of this Cylinder is proportional to the Weight of the Cylinder a H, becaufe $\frac{24}{\frac{2}{7}}$ is an invariable Quantity : And therefore when the Area of the Hole is extremely fmall in comparifon of the Area of the Top of the Water, the Force generating the whole Motion of the effluent Water will be very nearly proportional to the Weight of the Cylinder a H .

The Force generating the Motion of Water flowing thro' a Cy lindrical Pipe farew'd into the Side of a Veffel fill'd with Water, and laid parallel to the Horizon, is fomething greater than the Force generating the Motion of Water flowing through a Hole of a Diameter equal to that of the Pipe, and which

$$
\text { Animal OECONOMy. } 13
$$ i_{s} placed at an equal Diftance from the Top of the Water; as will appear by confidering the Nature of thefe two Motions.

In obferving the Motion of Water flowing through a Hole made in the Side of a Veffel, we may perceive the Vein not to fill the Hole. Sir Ifaac Newton, in determining this Motion from Experiments, found the Vein, after it had paffed out of the Hole, to grow fmaller and fmaller, till it came to a Diftance very nearly equal to the Diameter of the Hole; at which place he meafured the Diameter of the Vein, and found it to be to the Diameter of the Hole, as 21 to 25. The Area of a tranfverfe Section of the Vein at that Diftance from the Hole, is to the Area of the Hole; as the Square of the Diameter of the Vein, to the Square of the Diameter of the Hole ; that is, as 12 is to 17 nearly. This Con-

14 A Treatife of the
Contraction of the Vein arifes from the Nature of the Motion of the Water down the Veffel: For the Water falls down from the Top of the Veffel to the Hole not perpendicularly but obliquely, its Parts moving laterally as well as downwards. By this oblique Motion it is, that the Column of the defcending Water grows narrower perpetually from the Top of the Water to the Hole, and to a fmall Diftance beyond it; and that the Vein does not fill the Hole, but falls within it, leaving a little empty Space all round. On account of this Contraction of the Vein lefs Water flows oat, and by Confequence lefs Motion is generated in a given Time, than would be produced, if the Diameter of the Vein at the Hole was exactly equal to the Diameter of the Hole. And as lefs Motion is generated, fo the moving Force is likewife lefs; being only

Animal OEconomy. is

only equal to the Weight of a Cy linder of Water whofe Magnitude is ${ }_{12}^{2} \mathrm{aH}$, when the Hole is extremely fmall in comparifon of the upper Surface of the Water ; whereas it would be equal to the Weight of a Cylinder of Water whofe Magnitude is 2 aH , if the Vein filled the Hole and had no Contraction beyond it. And therefore the moving Force is lefs than it would be if the Vein filled the Hole and had no Contraction beyond it, in the Proportion of 12 to 17 .

If inftead of flowing through the Hole into the open Air, the Water flows through the Hole into a Cy lindrical Pipe and through that into the Air, and if the Diameter of the Hole be equal to that of the Pipe; the Force generating the Motion of the Water flowing through the Pipe will be different from the
${ }^{16}$ A Treatije of the
Force generating the Motion of the Water flowing through the Hole.

Firft, let us fuppole the Pipe to lie parallel to the Horizon; and then the Force generating the Motion of the Water flowing through it will be greater than the Force generating the Motion of the Water flowing through the Hole. For the Weight of Water in the Pipe, and the Refiftance arifing from the internal Surface of the Pipe, do both of them, by acting in a kind of Oppofition to the Weight of the defcending Cataract in the Veffel, retard the Motion of the Cataract, and hinder it from flowing fo faft into the Pipe, as it does through the Hole into the open Air. And by this Oppofition they make the Bafe of the Cataract at its Entrance into the Pipe to fpread and grow broader, and by Confequence encreafe the moving Force, and make

ANIMAL OECONOMY. Iy

 make it greater than the Force generating the Motion of the Water flowing through the Hole. Hence it is evident, that the moving Force will encreafe, either on encreafing the Length of the Pipe or leffening its Diameter; and will be greateft, when the Pipe is infinitely long or infinitely narrow: In which Cafes the Bafe of the Cataract at its Entrance into the Pipe will exactly fill it, and the moving Force will be equal to the Weight of the Cylinder of Water $2 \mathrm{aH}_{\text {; }}$ and by Confequence will be greater than the Force generating the Motion of the Water flowing through the Hole, in the Proportion of 12 to 17 , and the Motion generated in the Water flowing thro' the Pipe will be greater than the Motion generated in the Water flowing thro' the Hole; and the Difference of thefe two Motions will be greater when the Pipe

18 A Treatife of the
is long or narrow, than when it is fhort or wide. And therefore, if we fuppofe the Forces generating the Motions of Water flowing through Cylindrical Pipes laid parallel to the Horizon, to be equal to the Forces generating the Motions of Water flowing through Holes of equal Diameters, and placed at equal perpendicular Diftances from the upper Surface of the Water in the Veffel, on which Suppofition the Force generating the Motion of Water flowing through a Pipe will be proportional to the Weight of a Cylinder of Water whofe Magnitude is aH , the Motion of the Water flowing thro a longer or a narrower Pipe, when compared with the Motion of the Water flowing thro' a fhorter or a wider Pipe, will be found by Experiments to be fomething greater than it ought to be on this Suppofition of the moving Force.

Animal OEconomy. I?

But the Difference will be but fmall in Pipes of fmall Lengths and Diameters, and therefore in the followingExperiments, when a Pipe lies horizontally, I hall fuppofe the moving Force to be proportional to the Weight of the Cylinder aH .

The moving Force will become different when the Pipe is inclined to the Horizon. 'The Weight of Water in the Pipe, as far as it encreafes or leffens the Motion generated by the Force which is proportional to the Weight of the Cylinder aH , muft be added to or fubducted from that Weight; and the Sum or Difference will be proportional to the Force generating the Motion of the Water flowing thro the Pipe in that inclined Pofition. The part of the Weight of the Water in the Pipe which is to be added to or fubducted from the Weight of the Cylinder aH may be \ddagger C 2 thus
thus determined. Let BD be a Cylindrical Pipe, lying parallel to the Horizon, with its End B inferted into the Side of the Veffel at the perpendicular Dil- A tance of BA from the Top of the Water ; the Force generating the Motion of the Water flowing thro' this Pipe, is proportional to the Weight of the Cylinder $a \times A B$, becaule in this Cafe H is equal to $A B$. Let the Pipe be turned from its horizontal Pofition, either
 downwards into the Pofition Bd , or upwards into the Pofition $B A^{\prime}$; and then the moving Force will be changed, and be proportional to the Weight of the Cylinder $\mathrm{a} \times \mathrm{Ab}$ in the firt Cafe, and to the Weight of the Cylinder $a \times A \beta$ in the fecond, For the

$$
\text { ANIMAL OECONOMY. } 2 I
$$

the Weight of the Water in the Pipe Bd encreafeth the Motion of the Water flowing through it, and the part of this Weight which is wholly fpent in encreafing the Motion, is, from the Laws of Motion of Bodies down inclined Planes, the $\frac{B b}{B d}$ part of the Weight of Water contained in the Pipe, or of the Cylinder $a \times \mathrm{Bd}$; and therefore is equal to the Weight of the Cylinder $a \times B b$. This Weight added to the Weight of the Cylinder $a \times A B$ gives the Weight of the Cylinder $a \times A b$, which Weight is the Force generating the Motion of the Water flowing thro the Pipe Bd. The Weight of Water in the Pipe B o leffens the Motion of the Water flowing thro ${ }^{3}$ it, and the part of the Weight which is wholly fpent in leffening the Motion, is the Weight of the Cylinder $a \times B$ _. This Weight fubducted from

22 A Treatife of the
the Weight of the Cylinder $a \times A B$, leaves the Weight of the Cylinder $\mathrm{a} \times \mathrm{A}_{\beta}$, which Weight is the Force generating the Motion of the Water flowing through the Pipe B_{s}.

If B be made the Center of a Circle, and Bd or B \& the Radius, Bb will be the right Sine of Bdb the Angle of Depreffion of the Pipe below the Plane of the Horizon, and B^{β} will be the right Sine of $\mathrm{B} \delta \beta$ the Angle of its Elevation above it. And by Confequence, when the Pipe is depreffed below the Horizon; the moving Force will be proportional to the Weight of a Cylinder of Water, of a Bafe equal to the Orifice of the Pipe, and of a Height equal to the Sum of the perpendicular Height of the Water in the Veffel above the Place where the Pipe is inferted and the right Sine of the Angle of Depreffion of the Pipe below the Plane of the Horizon: And when the Pipe

Animal OEconomy. 23

 is elevated above the Horizon, the moving Force will be proportional to the Weight of a Cylinder of Water, whole Bare is equal to the Orifile of the Pipe, and whole Height is equal to the Difference of the perpendicular Height of the Water in the Veffel above the Place of Inferton and the right Sine of the Angle of Elevation of the Pipe above the Plane of the Horizon. If S denote the right Sine of the Angle in which the Pipe is deprefled below or elevated above the Plane of the Horizon, the moving Force will be proportional to the Weight of the Cylinder $\mathrm{a} \times \overline{\mathrm{H}+\mathrm{S}}$ when the Pipe is depreffed below the Horizon, and proportional to the Weight of the Cylinder $\mathrm{a} \times \overline{\mathrm{H}-\mathrm{S}}$ when it is edevated above it; and comprehending both Cafes in one Expreffion, the moving Force will be as $a \times \overline{\mathrm{H} \pm \mathrm{S}}$, or as $D^{2} \times \overline{H \pm S}$, very nearly.24 A Treatife of the
To meafure the Velocity of Water flowing through a Cylindrical Pipe fcrew'd into the Side of a Veffel filled with Water. V by this Propofition is as $V \frac{\mathrm{~F}}{\mathrm{DL}}$; or as $\sqrt{\frac{D^{2} \times \bar{H} \pm S}{D L}}$, or as $\sqrt{\frac{D \times \bar{H} \pm S}{L}}$. And therefore $\sqrt{\frac{D \times \overline{H \pm S}}{L}}$ will be one Meafure of the Velocity. Another Meafure of it may be had from Experiments. For the Velocity of Water flowing through a Cylindrical Pipe, lying either parallel or inclined to the Horizon, is proportional to the Quantity of Water difcharged in a given 'Time apply'd to the Orifice of the ftipe. For the Quantity difcharged in a given Time apply'd to the Orifice of the Pipe, will give the Length of a Cylindrical Pipe which can juft contain that Quantity; which Length

Animal OEconomy. 25

 is the Space that would be defcribed in the Time of the Motion by an uniform Velocity, equal to the Velocity wherewith the Fluid flows through the Pipe when the moving Force acts conftantly and uniformly, as it will do if the Veffel be kept conftantly full by pouring in Wa ter very gently at the Top as faft as it runs out of the Pipe. But the Velocities of all uniform Motions are as the Spaces defcribed in a given Time; and by Confequence, the uniform Velocity wherewith the Length of the faid Cylinder would be defcribed in the given Time of the Motion, will be proportional to that Length ; and therefore proportional to the Quantity of Fluid difcharged apply'd to the Orifice of the Pipe. Let M denote the Quantity of Water difcharged in the given Time of the Motion; and then the Velocity V will be propor-26. A Treatije of the
tional to, and confequently meafured by $\frac{M}{a}$; or $\frac{M}{D^{2}}$, becaufe Circles are to one another as the Squares of their Diameters.

If the Velocity be rightly meafured by this Propofition; then $\sqrt{\frac{D \times \overline{H+S}}{L}}$ muft be proportional to $\frac{M}{D^{2}}$ very nearly, as it will appear to be by the following Experiments, fetting afide the Refiftance of the Air.
'Tho' in this Propogition I have fet afide the Refiftance given by the Air to this Motion, yet it will be neceffary to confider it, in order rightly to underfand the Difturbances in the Motion caufed by it. Water in flowing out of a Pipe into the open Air communicates a Motion to the Air, and lofes fo much of its own Motion as it communicates. Now if we fuppofe the Mo-

Animal OEconomy. 27

tion communicated to be proportional to the Square of the Diameter of the Vein of the effluent Water and the Square of its Velocity, taken together ; then the Motion communicated to the Air, with refpect to the Motion which in the fame time would be generated in the Water if the Air gave no Refiftance, will be reciprocally as the Length of the Pipe. And by Confequence, in Pipes of the fame Length, the Motions communicated to the Air, will on this Suppofition be proportional to the Motions of the Water which would be generated if there was no Air, but the Water flow'd out of the Pipes into an empty Space perfectly void of all Matter. And therefore the Refiftance of the Air will caufe no Difturbance in the Proportions of the Motions of the Water flowing through fuch Pipes. This SuppoD 2 fition,
fition, that the Veins of the effluent Water are refifted by the Air in Proportion to the Squares of their Diameters and the Squares of their Velocities taken together, will not appear unreafonable, when we confider that folid Globes in moving through the Air, are refilted in that Proportion.

Experiment r. Three Cylindrical Pipes, whofe Lengths were two, four, and eight Feet, and whofe common Diameter was $\frac{345}{1000}$ parts of an Inch, were one after another fcrewed into the Side of the Veffel at the perpendicular Diftance of four Feet from the Top of the Water, and were laid parallel to the Horizon. Thefe three Pipes thus fituated, difcharged 175,133 , and $9^{\frac{1}{2}}$ Troy Ounces of Water in half a Minute. The Pipes having equal Diameters, the Velocities of the Water flowing through them were

Animal OEconomy. 29

 as the Quantities of Water difcharged in equal Times; that is, as the Numbers 175,133 , and $97 \frac{1}{2}$: For when D is given, V is as M . By the other Meafure of the Velocity deduced from this Propofition, the Velocities ought to have been reciprocally as the Square Roots of the Lengths of the Pipes; that is, nearly as the Numbers 20000, 14142, and 10000 . For the Pipes having equal Diameters, being all inferted into the Side of the Veffel at the fame perpendicular Diftance from the Top of the Water, and all laid parallel to the Horizon; D and H were given, and S was 0 ; and confequently the Velocity, which by this Propofition is as $\sqrt{\frac{D \times \overline{H \pm S}}{L}}$, ought in the prefent Cafe to have been as $\frac{\mathbf{1}}{\sqrt{ } \mathrm{L}}$. The Velocities from this Meafure are nearly proportionalonal to thofe from Experiments. Thofe from Experiments with refpect to thefe, are as the Numbers 175, $188,19.5$: whence it appears, that the Velocity from Experiment, with refpect to the Velocity expreffed by the other Meafure, is fomething greater in the longer of any two of thefe Pipes than in the fhorter; as it ought to be, from what has been faid, both on account of the Refiftance of the Air, and the Nature of the moving Force.

Experiment 2. Three Cylindrical Pipes of equal Lengths, whofe Diameters were $\frac{3-2}{1000} \frac{185}{1000}$, and $\frac{90}{1000}$ parts of an Inch, were one after another frrew'd into the Side of the Veffel, at the perpendicular Diftance of four Feet from the Top of the Water, and were laid parallel to the Horizon. Thele Pipes thus fituated difcharged $179,33^{\frac{1}{2}}$, and $6 \frac{1}{8}$ Ounces of Water in half a Minute. The

Velo-

Animal OEconomy. 3 I

 Velocities, found by dividing thefe Quantities by the Squares of the Diameters of their refpective Pipes, were as the Numbers 1293, 1008, and 756. By the other Meafure they ought to have been as the Square Roots of the Diameters of the Pipes; that is, nearly as the Numbers 193, 136, and 94. For the Pipes having equal Lengths, being all inferted into the Side of the Veffel, at the fame perpendicular Diftance from the Top of the Water, and being laid parallel to the Horizon; L and H were given, and S was 0 ; and.confequently $V \frac{\mathrm{D} \times \mathrm{H} \pm \mathrm{S}}{\mathrm{L}}$ was in this Cafe as $\sqrt{ } \mathrm{D}$. The $\mathrm{Ve}-$ locities from this Meafure are nearly proportional to thofe from Experiments. Thofe from Experiments, with refpect to thefe, are as the Numbers $670,741,804$; whence it appears, that the Velocity fromExpe-

32

A Treatile of the

Experiment, with refpect to what it ought to be by the Meafure of this Propofition, is fomething greater in the narrower of any two of thefe Pipes than in the wider; as I have fhewn it ought to be, from the Nature of the moving Force.

Experiment 3. Two Cylindrical Pipes, whofe Lengths were eight Feet and two Feet, and whofe Diameters were $\frac{345}{1000}$ and $\frac{185}{12000}$ parts of an Inch, were fcrew'd into the Side of the Veffel at the perpendicular Diftances of four Feet, and one Foot from the Top of the Water, and were laid parallel to the Horizon. Thefe Pipes thus fixed dilcharged 87% and 16 Ounces of Water in half a Minute. The Velocities in them, found by dividing their Difcharges by the Squares of their Diameters, were nearly as the Numbers 73, and 46. By the other Meafure of the Velocity they ought to have been

Animal OEconomy. 33

 as the Square Root of the Diameters of the Pipes; that is, nearly as the Numbers 186 and 134: For H and L were each of them 4 in the firf Experiment, and I in the fecond, and S was nothing in both; and confequently the Velocity expreffed by $\sqrt{\frac{D \times \bar{H} \pm \mathrm{S}}{L}}$, in the prefent Cafe, was as $V \mathrm{D}$. The Velocity in the Pipe which was nearer to the Top of the Veffel, was lefs than it ought to have been by this Meafure, in the Proportion of 34 to 39. And in all the Experiments I have made upon this Occafion, I have always found the Velocities in the fame Pipes placed at different Diftances from the Top of the Water, to be lefs at lefs Diftances from the Surface than at greater with refpect to what they ought to have been by this Propofition. This34 A Treatile of the
may be owing, partly to a Difturbance given to the Motion by the Water which was poured in at the Top of the Veffel in order to keep it conftantly full; which Difturbance being greater at a lefs Diftance from the Surface, might caufe a greater Lofs of Motion: and partly to the moving Force's being in reality fomething greater at a greater Diftance from the Top of the Water, than it ought to be by the Meafure I have given of it.

Experiment 4. Two Cylindrical Pipes of equal Diameters, and of the Lengths I and 4 , were one after the other fcrew'd into the Side of the Veffel at the perpendicular Diftance of four Feet from the Top of the Water, and were each of them depreffed in an Angle of 30 Degrees below the Plane of the Horizon. Thefe Pipes thus fituated difcharged $4 \mathrm{I}_{\frac{3}{8}}$ and $25^{\frac{5}{5}}$ Ounces of Water

Animal OEconomy. 35

Water in half a Minute. The Velocities in thefe Pipes, on account of their having equal Diameters, were as the Quantities difcharged. By the other Meafure they ought to have been as the Numbers 300 and 173 ; for D was given becaufe the Pipes had equal Diameters, and being both depreffed below the Horizon; the Meafure of the Velocity $\sqrt{\frac{D \times \bar{H}+S}{L}}$ in this Cafe became $\sqrt{\frac{H+S}{L}}$. The natural Sine of 30 Degrees being equal to half the Radius, S was half a Foot for the fhorter Pipe, and two Feet for the longer ; and $\mathrm{H}+\mathrm{S}$ was $4^{\frac{1}{2}}$ for the firt, and $\frac{6}{4}$ or $\frac{3}{3}$ for the fecond; or 9 for the firft, and 3 for the fecond. But the Square Roots of 9 and 3 are as the Numbers 300 and 173, which Numbers are nearly in the fame Proportion as the Numbers E 2 41_{57}^{3}
3^{6} A Treatise of the
$41^{\frac{3}{5}}$, and $25^{\frac{3}{3}}$; and therefore the Velocities were nearly in the fame Proportion as they ought to have been by this Proposition.

Propofition II.

IF a Fluid flow throe two Syflems of Cylindrical Pipes made of a given Sort of Matter, and confining each of one Trunk, and the fame Nomber of Branches arising from it; if the Pipes of the two Systems have like Situations and Capacities, that is, if any two corresponding Pipes be fimilarly Situated with respect to the ret of the Pipes, and their Capacities be as the Capacities of the whole Systems; And if the Forces generating the Motons in two corresponding Pipes be in the fame Proportion as the whole noving Forces of the two Syltems: The Velocities in the two corresponding Pipes, feting aside the Refinance of

Animal OEconomy. 37
the Air, will be in Ratios compounded of the fubduplicate Ratios of the whole moving Forces of the two Syrterms directly, and the fubduplicate Ratios of the Diameters and Lengths of the Pipes taken together invert $l y$. If V, \mathbf{v} be put for the Velocities in the two Pipes; D, d, and L, 1 for their Diameters and Lengths; and F, f for the whole moving Forces of the two Syftems; I fay, that $\mathrm{V} . \mathrm{v}:: \sqrt{\mathrm{FL}}$. $\frac{\mathrm{f}}{\mathrm{dl}}$.
For by the First Proposition, the Velocities in two correfponding Pipes of the two Syftems, fetting afide the Refiftance of the Air, are in Ratios compounded of the fubduplicate Ratios of the Forces generating the Motions in the two Pipes directly, and the fubduplicate Ratios of the Diameters and Lengths of the Pipes inverfly: But by Suppofition the Forces generating

38 A Treatife of the
nerating the Motions in the two Pipes are in the fame Proportion as the whole moving Forces of the two Syftems, and the Capacities of the two Pipes are as the Capacities of the two Syftems: And therefore by Proportion of Equality, the Velocities in the two correfponding Pipes, fetting afide the Refiftance of the Air, will be in Ratios compounded of the fubduplicate Ratios of the whole moving Forces of the two Syftems directly, and the fubduplicate Ratios of the Dia= meters and Lengths of the two Pipes inverfly.

$$
\begin{gathered}
\text { Proof by Experiments } \\
\text { Experimenti. }
\end{gathered}
$$

THad two Syftems of Cylindrical Pipes made of Brals, each of which confifted of a Trunk and two Branches.

Animal OEconomy. 39

Branches. The larger Branch of each Syftem was a Continuation of its Trunk, having an equal Diameter, and lying in a right Line with it ; and the fmaller Branch of each made an Angle of 30 Degrees with the larger. The Trunks and Branches of the two Syftems were each of them one Foot in Length; the Diameter of the Trunk and larger Branch in the greater Syftem was $\frac{345}{1000}$, and the Diameter of the fmaller Branch $\frac{\mathrm{r} 8 \mathrm{IV}}{100}$ parts of an Inch ; and the Diameter of the Trunk and larger Branch in the leffer Syftem was $\frac{187}{1000}$, and the Diameter of the fmaller Branch $\stackrel{\circ 0}{1000}$ parts of an Inch. The Trunks of the two Syftems were fucceffively fcrew'd into the Side of the Veffel at the perpendicular Diftance of four Feet from the Top of the Water, and were turned till their Branches lay parallel to the Horizon. In this Situation, the Branches

40 A Treatile of the
Branches of the greater Syftem diffcharged $169^{\frac{1}{2}}$ and 20 , and the Branches of the leffer $30 \frac{\pi}{4}$ and 4 Ounces of Water in half a Minute. The Velocities in the Trunks and Branches of thee Syftems, found by dividing the Quantities which flow'd through them in a given Time by the Squares of their reflective Biameters, were as the Numbers 1592 , 1424, and 571 in the Trunk and Branches of the greater Syftem; and as the Numbers 979,865 , and 500 in the Trunk and Branches of the leffer. The Quantities of Water contained in thee two Syftems, were as the Numbers 273 and 78 ; as I found by multiplying the Squares of the Diameters of the feveral Pipes into their Lengths, and then adding the Products of each Syftem into one Sum. Since all the Pipes of the two Syftems were at the fame perpendicular Diftance from the Top

Animal OEconomy. $\quad 4 \mathrm{x}$

of the Water, and lay parallel to the Horizon, in which Pofition the Weights of Fluid contained in the Pipes made no part of the Forces generating the Motions of the Water flowing thro' them, the Forces generating the Motions in the Trunks and correfponding Branches, were as the Squares of their $\mathrm{Di}-$ ameters, or as the Quantities of Water contained in them, becaufe they all had the fame Length. And therefore had thefe two Syftems been truly made, fo as to have had the Conditions required in the Propofition, that is, had the Quantities of Water contained in the Trunks and correfponding Branches been exactly proportional to the whole Quantities of Water contained in the two Syftems; the Velocities in thofe Pipes, fetting afide the Refift $=$ ance of the Air, ought to have been in the fubduplicate Ratios of their F Dia=

42 ATreatife of the
Diameters directly. But the $\mathrm{Ca}-$ pacity of the leffer Branch of the greater Syftem compared with the Capacity of thatSyftem, was greater than the Capacity of the leffer Branch of the leffer Syftem compared with the Capacity of its Syftem, in the Proportion of I28 to 103. The Velocity by Experiment in the leffer Branch of the greater Syftem compared with the Velocity by the Theory, was lefs than it would have been had the Branch been truly conftructed; which agrees with what I have already fhewn both from Experiments and Reafon, namely, that in Pipes of different Diameters but equal Lengths the Velocity by Experiment compared with the Velocity by the Theory, is always greated in the narroweft Pipes. The Velocity by Experiment with refpect to the Velocity meafured by the Square Root

Animal OEconomy. 43

 Root of the Diameter of the Pipe, was lefs in the fmaller Branch of the greater Syftem than in the fmaller Branch of the leffer Syftem, in . the Proportion of 21 to 26. As the Capacity of the fmaller Branch with refpect to the Capacity of the Syftem, was fomething greater in the greater Syftem than in the leffer ; fo the Capacity of the Trunk or larger Branch with refpect to the Capacity of the Syftem, was on the contrary fomething lefs in the greater Syftem than in the leffer; and by Confequence, from what has been faid concerning the $\mathrm{Na}-$ ture of the moving Force, the Velocity by Experiment with refpect to the Velocity meafured by the Square Root of the Diameter of the Pipe, was greater in the Trunk and larger Branch of the greater Syftem than it was in the Trunk and larger Branch of the leffer: In the F 2 TrunkTrunk it was greater in the Proportion of 86 to 72 , and in the Branch it was greater in the Proportion of 76 to 63 . Thefe Deviations of the Theory from Experiments, are not Objections againft ir, but rather Arguments of its Truth ; fince they all arife, and may be accounted for, from the Syftems not having exactly the Conditions required in this Propofition.

Experiment II. Two Sy\&tems of Cylindrical Pipes, the leffer of which was the greater of the two Syftems ufed in the laft Experiment, and the greater a Syftem four times as great, its Trunk and Branches having the fameDiameters, and being four times as long as the Trunk andBranches of the leffer, had their Trunks fucceffively fcrew'd into the Side of the Veffel at the perpendicular Diftance of four Feet from the Top of the Water, and had both their Trunks

Animal OEconomy. 4j

and Branches laid parallel to the Ho rizon: In this Pofition the Branches of the greater Syftem difcharged $90^{\frac{3}{4}}$, and $13^{\frac{1}{2}}$; and the Branches of the leffer $169^{\frac{1}{2}}$, and 20 Ounces of Water in half a Minute. The Diameters of the Trunks and correfponding Branches of the two Syftems being equal ; the Velocities in thofe Pipes were as the Quantities of Water which flow'd thro' them in a given Time, that is, as the Numbers $104^{\frac{1}{4}}, 90^{\frac{3}{4}}$, $13^{\frac{1}{2}}$ in the Trunk and Branches of the greater Syftem; and as the Numbers 189 $9^{\frac{1}{2}}$, $69^{\frac{1}{2}}$, 20 in the Trunk and Branches of the leffer. The Diameters of the correfponding Pipes of the two Syftems being equal, the Pipes lying parallel to the Horizon, and at the fame perpendicular Diftance from the Top of the Water ; the moving Forces of the two Syftems were equal, as were the moving
wing Forces of any two of their correfponding Pipes ; and the Quantities of Water contained in theSyftems were as the Quantities contained in their Trunks, or in any two of their correfpondingBranches, which Quantities were as the Lengths of thofe Pipes, their Diameters being equal ; and therefore by this Propofition, the Velocities in the correfponding Pipes of the Syftems ought to have been in the fubduplicate Ratios of the Lengths of thofe Pipes, that is, they ought to have been twice as great in the Trunk and Branches of the fhorter Syftem as in the Trunk and correfponding Branches of the longer, as they nearly were ; only they were fomething greater than they ought to have been in the longer Syftem, from a lefs Refiftance of the Air, and from the Nature of the moving Force, which from what has

Animal OECONOMy. 47

 been faid concerning its Meafure, was fomething greater in the longer Syftem than in the Thorter.Experiment III. I placed the two Syftems, ufed in the laft Experiment, at different perpendicular Diftances from the Top of the Water with their Trunks and Branches parallel to the Horizon; and always found the Velocities in the Trunk and Branches of each Syftem to be nearly in the fubduplicate Ratios of the perpendicular Diftances of the Syftem from the Top of the Water; only at lefs Diftances they were fomething lefs than they ought to have been by this Meafure, for the Reafons affigned in the third Experiment of the firt Propofition.

Experiment IV. The two Syftems ufed in the fecond and third Experiments, were one after the other fcrew'd into the Side of the Veffel at different perpendicular Diftances from
from the Top of theWater, the leffer at the Diftance of one Foot, and the greater at the Diftance of four Feet, and were turned till the lefferBranch of each Syftem was depreffed in an Angle of 30 Degrees below the Plane of the Horizon, while the Trunk and larger Branch of each Syftem lay parallel to it: The Syftems being thus fituated, the Branches of the greater Syftem difcharged $89 \frac{1}{\frac{1}{2}}$, $17^{\frac{1}{2}}$; and the Branches of the leffer 79, $13^{\frac{1}{4}}$ Ounces of Water in half a Minute. The Diameters of the correfponding Pipes being equal ; the Velocities in them were as the Quantities of Water which flowed through them in the given Time of the Motion, that is, as $206 \frac{1}{\frac{1}{8}}$, $8_{9 \frac{1}{2}}, 17 \frac{1}{3}$ in the Trunk and Branches of the greater Syftem ; and as $92 \frac{1}{f}$, 79, $13^{\frac{2}{4}}$ in the Trunk and Branches of the leffer. The Diameters of the correfpondingPipes being equal, and

Animal OEconomy. 49

 and the Forces generating the Mozions in thole Pipes being nearly proportional to the Quantities of Water contained in them, and the whole moving Forces of the two Syftems being nearly proportional to their whole Quantities of Fluid; the Velocities in the correfponding Pipes ought to have been equal by this Proposition. The Differences were not great, and probably arofe chiefly from the leffer Syftem being placed nearer to the Top of the Water than the greater.
$0000030906900000 c 000$

Propofition III.

TF, a Fluid flow throw two Syftems of Cylindrical Pipes made of a given Sort of Matter, and confining each of two 'Trunks, and the Same Number of Branches finilar in their Situations and. Capacities, that is, if

[^0]any

50
A Treatise of the
any two corresponding Pipes be fimilarly fituated with respect to the reft of the Pipes, and their Capacities be as the Capacities of their whole Syfterms, if in each $S_{y j t e m}$ the lat and smallest Branches of the two Trunks be continuous, and if the Forces generating the Motions in any two corresponding Pipes be in the fame Proportion as the whole moving Forces of the two Systems; 'The Velocities in two corresponding Pipes, Setting afide the Refiftance of the Air, will be in Ratios compounded of the fubduplicate Ratios of the whole moving Forces of the two Systems directly, and the fubduplicate Ratios of the Didmeters and Lengths of the Pipes taken together inverfly, that is, V.v:: $V \frac{F}{D L} \cdot \sqrt{d}$.

For by the First Proposition, the Velocities in two correfponding Pipes
Animal OEconomy. کi Pipes of the two Syftems, fetting afide the Refiftance of the Air, are in Ratios compounded of the fubduplicate Ratios of the Forces generating the Motions in the two Pipes directly, and the fubduplicate Ratios of the Diameters and Lengths of the Pipes taken together inverfly: But by Suppofition, the Forces generating the Motions in two correfponding Pipes, are as the whole moving Forces of the two Syftems, and the Capacities of two correfponding Pipes, as the whole Capacities of the two Syftems: And therefore by Proportion of Equality, the Velocities in two correfponding Pipes, fetting afide the Refiftance of the Air, will be in Ratios compounded of the fubduplicate Ratios of the whole moving Forces of the two Syftems directly, and the fubduplicate Ratios of the Diame-
G2 ters taken together inverfly.

Nataty
Proof by Experiments.
O 0 examine the Truth of this Propofition by Experiments, I got made of Brafs two fuch Syftems of Cylindrical Pipes as are reprefented in there Figures. Each Syftem confifted of two Trunks and five Branches all lying in one and the fame Plane. The Trunks and Branches of each had equal Diameters and Lengths. The common Diameter of the Trunks and Branches of the greater Syitem, was $\frac{187}{3000}$; and the common Diameter of the Trunks and Branches of the lelfer Syftem, was $\frac{90}{1000}$ parts of an Inch. The common Length of the Trunks and Branches of the greater Syitem, was half a Foot; and the common

Length

Animal OEconomy. 53

Length of the Trunks and Branches of the leffer, three Inches. The Trunks of each Syitem opened into the Branches, through two triangular Spaces which were each three Inches long in the greater Syftem and an Inch and a half in the leffer; and their Capacities were nearly in the fame Proportion as the Capacities of their Trunks or Branches, that is, in the Proportion of 87 to 10. When the Ends F and f were fcrew'd into the Side of the Veffel at the perpendicular Diftance of four Feet from the Top of the Water, and were turned till their Branches lay parallel to the Horizon; their other Ends G and g difcharged 3^{65} and $8_{\frac{1}{8}}^{\frac{1}{5}}$ Ounces of Water in half a Minute. The Velocities in the Trunks, found by dividing the Difcharges by the Squares of their Diameters, were as the Numbers 26 and 25 nearly. And the Veloci-

54 A Treatife of the
ties by this Propofition ought to have been as the Numbers $96 \frac{1}{2}$ and 95 , which are proportional to the Numbers 26 and 25 very nearly. And fince the Syftems were fimilar, and fimilarly fituated, no Doubt can be made, but that the Velocities in correfponding Branches were likewife in the fame Proportion.

Propofition IV.

F a Fluid flow thro two compoundedSyjtems of Cylindrical Pipes, confifting each of two CylindricalTrunks, and the fame Number of Jmaller Sy/tems, like thofe deferibed in the lat Propofition, the Trunks of which fmaller Syftems open into their refpective principal Trunks of the compounded Sy,tems, if all the corresponding Pipes of the compounded Syftems bave like Situations and Capacities, that is, if any

Animal OEconomy. 55

 two corresponding Pipes be Similarly Situated with respect to the reft of the Pipes, and their Capacities be in the fame Proportion as the wholeCapacities of the compounded Systems, and if the Forces generating the Motions in two corresponding Pipes be as the whole moving Forces of the two compounded Syrterms; the Velocities in two corresponding Pipes, setting aside the Refiftance of the Air, will be in Ratios compounded of the fubduplicate Ratios of the whole moving Forces of the two compounded Systems directly, and the fibduplicate Ratios of the Diameters and Lengths of the Pipes taken together inver $/ l y$, that is, $V . v:: \sqrt{\overline{D L}}$. $\sqrt{\mathrm{f}} \frac{\mathrm{f}}{\mathrm{d}}$.The Demonstration of this Proposition is the fame with that of the lat, and therefore need not be repeated.

Cor.

56 A Treatife of the

Cor. i. If the whole moving For= ces of the two compounded Syftems be as the Capacities of the Syftems, and confequently as the Capacities of two correfponding Pipes; the Velocities in thofe Pipes, fetting afide the Refiftance of the Air, will be in the fubduplicate Ratios of the Diameters of the Pipes. If F.f:: D^{2} L. $\mathrm{d}^{2} 1$; then will V.v:: $\sqrt{ } \mathrm{D} . \sqrt{ } \mathrm{d}$.

Cor. 2. If the whole moving Forces of the tiwo compounded Syftems be as the Capacities of the Syftems, and confequently as the Capacities of two correfponding Pipès, and the Diameters of the correfponding Pipes be in the fubduplicate Ratios of their Lengths, or of thé Lengths of the Syftems ; the Velocities in correfponding Pipes, fetting afide the Refiftance of the Air, will be in the fubquadruplicate Ratios of the Lengths of the Syftems. If

ANIMAL OECONOMY. 57

F.f:: D^{2} L. $\mathrm{d}^{2} l$, and D.d $:: \sqrt{ } \mathrm{L}, \sqrt{ } 1$; then will $\mathrm{V}, \mathrm{v}:: \mathrm{L}^{\frac{\pi}{4}} \cdot 1^{\frac{\pi}{7}}$.

Cor. 3. If the whole moving Forces of the two compounded Syftems be as the m Power of the Capacities of the Syftems, and confecquently as the m Power of the Capacities of two correfponding Pipes, and the Diameters of the Pipes be as the "Power of their Lengths, or as the n Power of the Lengths of the Syf tems; the Velocities in two correfponding Pipes, fetting afide the Refiltance of the Air, will be in the $\frac{2 n m+m-n=1}{2}$ Power of the Lengths of the Syftems. If F. $f: \sqrt{D^{2} \mathrm{~L}^{2}} \cdot \mathrm{~d}^{2} \mathrm{l}^{m}$, and $D . d::^{\mathrm{n}} .1^{\mathrm{h}}$; then will $\mathrm{V} . \mathrm{v}:$ $L^{\frac{2 n m+m-n-1}{2}} \cdot 1^{\frac{2}{2} m+m-n-1} 2$.

Cor. 4. The whole moving Forces of the two compounded Syftems are in Ratios compounded of the

58 A'Treatije of the duplicate Ratios of the Velocities in two correfponding Pipes, and the fimple Ratios of their Diameters and Lengths, that is, F.f:: $V^{2} D L$. $v^{2} \mathrm{~d}$.

Scholium.

This Propofition will hold true, if the two Syftems be made of Conical Pipes equal in their Capacities and Lengths to the Cylindrical ones, and fo conftructed, as that the greateft or leaft Diameters of two correfponding Conical Pipes fhall every where bear the fame Proportion to each other, as the Diameters of the two Cylindrical Pipes which are equal to them.

Animal OEconamy. $\quad 59$

$00050 Q O Q 060+2050600060$

Propofition V. Problem I.
THE Velocity of a Fluid moving through a Cylindrical Pipe of a given Diameter and Lengtb and the Force generating the Motion being given; to determine the Velocities generated by an equal Force in the feveral Parts of a Syftem like one of the Syftems defcribed in the Third Propofition, which Sy/tem confifts of two given Cylindrical Trunks and a given Number of Cylindrical Branches into which the two Trunks open.

The two Forces generating the Motions in the Cylindrical Pipe and in this Syftem being equal by Suppofition ; their Meafures will likewife be equal, which Meafures may be had from Cor. 7. Prop. I. For the Force generating the whole Motion

60 A Treatije of the of the Syftem, is the Sum of the Forces generating the Motions in all its Parts ; and the Meafures of the Forces generating the Motions in the feveral Parts of the Syftem, may be expreffed by that Corollary. Putting L for the Length of the Cy lindrical Pipe, D for its Diameter, V for the Velocity of the Fluid moving through it; 1 for the Length of that Trunk through which the Fluid flows into the Syftem, d for its Diameter, and x for the Velocity of the Fluid flowing through it ; Λ for the mean Length of the Branches, Δ for the Diameter of a Cylinder whofe Length is that mean Length, and whofe Orifice is equal to the Sum of the Orifices of all the Branches; a for the Length of the other Cylindrical Trunk; and s for its Diameter: the Meafure of the Force generating the Motion of the Fluid flowing thro' the Cylindrical

Animal OEconomy. Gi Pipe is $V^{2} \mathrm{DL}$; and the Meafure of the Force generating the Motion in that Trunk through which the Fluid flows into the Syftem is $x^{2} \mathrm{~d}$: The meanVelocity in the Branches, is to x the Velocity in that Trunk, as d^{2}, is to Δ^{2}, becaufe the Velocities of the fame Quantity of Fluid flowing through two Cylindrical Pipes in the fame time, are reciprocally proportional to the Squares of their Diameters; whence the mean Velocity in the Branches is $\frac{\mathrm{xa}^{2}}{\Delta^{2}}$; and the Meafure of the Force generating the Motion in the Branches taken all together, is $\frac{\mathbb{x}^{2} \mathrm{~d}^{4} \Lambda}{\Delta^{3}}$: By the fame Reafoning the Velocity in the other Trunk thro which the Fluid flows out of the Syftem, is $\frac{\mathrm{xd}^{2}}{\delta^{2}}$; and the Meafure of the Force generating the Motion of the Water flowing thro'

62 A Treatife of the
thro it, is $\frac{\mathrm{x}^{2} \mathrm{~d}^{4} \lambda}{\delta^{3}}$: But the Sum of the Forces generating the Motions in all the Parts of the Syftem, is by Suppofition equal to the Force generating the Motion in the Cylindrical Pipe; and by Confequence, $\mathrm{x}^{2} \mathrm{~d} 1+\frac{\mathrm{x}^{2} \mathrm{~d}^{4} \Lambda}{\Delta^{3}}+\frac{\mathrm{x}^{2} \mathrm{~d}^{4} \lambda}{\delta^{3}}=\mathrm{V}^{2} \mathrm{D}$, whence x is equal to $\sqrt{\frac{V^{2} D L}{d+\frac{d^{4} \Lambda+}{\Delta^{3}}+\frac{d^{4} \lambda}{\delta^{3}}}}$.

If this Value of x be fubftituted in its Room in $\frac{x^{2} d^{2}}{\Delta^{2}}$, the Meafure of the mean Velocity in the Branches; that Meafure will become $\frac{\mathrm{d}^{2}}{\Delta^{2}}$ $\sqrt{\frac{V^{2} D L}{d I+\frac{d^{4} \Lambda}{\Delta^{3}}+\frac{d^{+} \lambda}{d^{3}}}}$.
If the faid Value of x be fubftituted in its Room in $\frac{x d^{2}}{\delta^{2}}$, the Meafure of the Velocity in the other Trunk;

Animal OEconomy. $\quad 63$

Trunk; that Meafure will become $\frac{\mathrm{d}^{2}}{\delta^{2}} \sqrt{\frac{V^{2} \mathrm{DL}}{\mathrm{d}+\mathrm{d}^{4} \Lambda+\mathrm{d}^{4} \lambda} \frac{\Delta^{3}}{\delta^{3}}}$.

Cor. 1. If the Capacity of the Branches be enlarged by an Enlargement of their Diameters or an Encreafe of their Number, that is, if Δ be encreafed, all other Things continuing the fame; the Velocities generated by a given Force, will be greater in the Trunks and lefs in the Branches than they were before this Change happened in the Capacity of the Branches.

Cor. 2. If the Capacity of the Branches be leffened by a Contraction of their Diameters or a Decreafe of their Number, that is, if Δ be diminifhed, all other Things continuing the fame; the Velocities generated by a given Force, will be lefs in the Trunks and greater in

64 A Treatife of the
in the Branches than they were before this Change was made in the Capacity of the Branches.

Cor. 3. If the two Trunks of the Syltem be given' the Velocities generated by a given Force, will be greateft in the Trunks and leaft in the Branches when \triangle is infinite, in which Cafe the Term $\frac{\mathrm{d}^{4} \Lambda}{\Delta^{3}}$ will vanifh or become nothing: The $\mathrm{Ve}-$ locity in the Trunk through which the Fluid flows into the Syftem will

$$
\sqrt{V^{2} \mathrm{DL}}
$$

be $\sqrt[V]{ } \frac{d+\frac{d^{+} \lambda}{\delta^{3}}}{}$: The Velocity in the Branches will be infinitely little: And theV elocity in the otherTrunk will be $\frac{d^{2}}{\delta^{2}} \sqrt{\frac{\mathrm{~V}^{2} \mathrm{DL}}{\mathrm{dI}++\frac{d^{+} \lambda}{\delta^{3}}}}$.

Cor. 4. If the Velocity in the given Cylindrical Pipe be equal to the

Animal OEconomy. 65

the Velocity in that Trunk thro ${ }^{2}$ which the Fluid flows into the Syftem, that is, if V be equal to x, and confequently V^{2} equal to x^{2}, and if the Diameter of the given Cylindrical Pipe, be equal to the Diameter of that Trunk through which the Fluid flows into the Syftem, that is, if D be equal to d ; then the Length of the Cylindrical Pipe or L, will be equal to $1+\frac{d^{3} \Lambda}{\Delta^{3}}$ $+\frac{d^{3} \lambda}{\delta^{3}}$.

Cor. 5. If the Branches taken together, be wider than either of the Trunks; the mean Velocity in them will be lefs than it is in the Trunks: and if one Trunk be wider than the other ; the Velocity will be as much lefs as the Trunk is wider.
66. A Treatise of the

Proof by Experiments.
THE greater of the Syftems which were made for the Proof of the Third Propofition, was fcrewed into the Veffel at the perpendicular Diftance of four Feet from the Top of the Water, and was turned till its Branches were parallel to the Horizon. The Branches of this Syftem were fo contrived, that their Ends next to the Veffel could be opened or chut by little Brafs Sliders fixed to the Plate thro which, thofe Pipes paffed, which Sliders being moved up or down, opened or fhut the Ends of the Branches. This Syftem being thus fituated, when the Branch C only was open ; the Trunk G difcharged 29: Ounces of Water in half a Mi-

Animal OEconomy. 67

 nute: When the three Branches b, c, d were open, it difcharged 36 Ounces: And when all the five Branches were open, it difcharged $3^{6 \frac{5}{8}}$ Ounces in the fame Time. The Velocities in the two equal Trunks, were as the Quantities difcharged. When one Branch only was open, the Velocity in that Branch, was equal to the Velocity in the Trunk; and therefore the Velocity in the Branch C, when the reft of the Branches were fhut, was as $29^{\frac{2}{2}}$. The mean Velocity in the three Branches, found by applying 36 to 3 the Sum of their Orifices, the Orifice of each of the Trunks being I, was as 12 : and the Velocity in the five Branches, when they were all open, found by dividing $36 \frac{5}{8}$ by 5 , was as $7_{40}^{\frac{13}{40}}$. Thefe were the true Velocities in the Trunks and Branches in thefe three Experiments. I thall 12 now
A Treatife of the

now fhew what they ought to have been by this Problem.

The two Trunks and Branch C taken together, may be confidered as one Cylindrical Pipe ; and therefore may reprefent the given Cy lindrical Pipe in this Problem, in which the Velocity V is as $29^{\frac{1}{2}}$. The Trunks and Branches of this Syftem having all equal Diameters, D, d, and ${ }^{\text {a were equal. The Lengths }}$ of the two Trunks were equal, and when added together, their Sum was equal to the Length of the Branches added to the Lengths of the two triangular Spaces into which they opened; therefore 1 was equal to λ, and $1+\lambda$ equal to Λ if the triangular Spaces be confidered as Parts of the Branches, on which Suppofition L was equal to $1+\lambda+\Lambda$; and by Confequence equal to two Feet; for 1 and a were each half a Foot, and Λ one Foot. The Velocity

Animal OEconomy. 69

 city in the Trunks, d being I , will be expreffed by $\sqrt{\frac{174 \frac{1}{2}}{1+\frac{1}{\Lambda^{3}}}}$; therefore when three Branches were open, and by Confequence Δ equal to $\sqrt{ } 3$; the Velocity ought to have been nearly as 3^{8} : And nearly as 40 ; when all five were open, and Δ equal to $\sqrt{ } 5$.The Velocities in the Branches, expreffed by $\frac{d^{2}}{\Delta^{2}} \sqrt{\frac{174 \frac{1}{2}}{1+\frac{1}{2}}}$, ought to have been $12{ }_{2}^{2}$, when three Branches were open; and 8 , when all five were open. The near Agreement of thee Velocities with thole from Experiments, thews the Velocities in the Trunks and Branches of this Syftem to be rightly determined by this Problem.

Propofition VI.

TF a Fluid flow through a simple System of Cylindrical Pipes, con$\sqrt{3}$ ting of one Trunk and a certain Number of Branches; the Velocity in any Pipe will be greater or less, as the moving Force of the System is greater or less, as the Pipe is wider or narrower, Sorter or longer, near er to or farther from the moving Force, as the Weight of Fluid in the Pipe conspires with or opposes its Moion, or as any of the other Pipes of the System is lengthened or Jbortened.

That the Velocity in any Pipe of this Syftem is greater or left, as the moving Force of the System is greater or lefs, as the Pipe is wider or narrower, fhorter or longer, or as the Weight of Fluid contained in

Animal OEconomy. $\quad 7 \mathrm{I}$

 the Pipe confpires with or oppofes its Motion; has been fully proved in the foregoing Propofitions. And that the Velocity is greater or lefs, as the Pipe is nearer to or farther from the moving Force, may be thus proved. From the Nature of this Motion, the whole moving Force is refifted by the Quantity of Fluid contained in the whole Syftem : And that part of this Force which moves the Fluid through any Pipe, is refifted by the Quantity of Fluid in that part of the Syftem which lies before it ; the Refiftance therefore will be greater or lefs, as a Pipe is nearer to or farther from the moving Force: But as the Refiftance is greater or lefs, the Preffure of the moving Fluid againft the Orifice of the Pipe, and confequently the Velocity in the Pipe, is greater or lefs; and therefore, cateris $p a-$ ribus, the Velocity in a Pipe is72 A Treatife of the
greater or lefs, as it is nearer to or farther from the moving Force. Laftly, the Velocity in a Pipe will be greater or lefs, cateris paribus, as any of the other Pipes of the Syftem is lengthened or fhortened: For by lengthening or Thortening a Pipe, the Refiftance given by the Fluid contained in it to that pare of the moving Force of the Syftem which is fpent on that Pipe, becomes greater or lefs than it was before: But a greater or lefsRefiftance makes the moving Force to act more or lefs powerfully on the other Pipes, and encreafes or leffens the Velocities in them: And therefore the Velocity in a Pipe will be encreafed or leffened, cateris paribus, as any of the other Pipes is lengthened or fhortened.

ANIMAL OECONOMY. 73

QQepecgapjoctonccocorsosing
PROOF by EXPERIMENTS.
THA T the Velocity in a Pipe of this Syftem is greater or lefs, as the moving Force of the Syftem is greater or lefs, or as the Weight of Fluid contained in it confpires with or oppofes its Motion, as the Pipe is wider or narrower, fhorter or longer, is fully proved by the Experiments of the foregoing Propofitions. And that the Velocity is greater or lefs as the Pipe is nearer to or farther from the moving Force, or as any other Pipe of the Syftem is lengthened or fhortened, will appear from the following Experiments.

A Syftem of Cylindrical Pipes confifted of a Trunk, and three Branches of equal Diameters and Lengths; the Branches lay all in K
the

54 A Treatije of the
the fame Plane, and were placed at the Diftances of four, nine, and fixteen Feet from the moving Force of the Syftem, or that End of the Trunk which was fcrewed into the Side of the Veffel. The Branches, beginning with that which lay neareft to the moving Force, difcharged in the fame Time Quantities of Water, which were as the Numbers 9, 6, and 5. The Branches having equal Diameters, the Velocities in them were as the Quantities difcharged; and therefore, the Velocity in a Pipe is greater or lefs, ceteris paribus, as the Pipe is nearer to or farther from the moving Force.

A given Branch at the Diftance of one Foot from the moving Force difcharged 20 Ounces of Water in half a Minute, when the Length of the Trunk was two Feet ; and 36 Ounces in the fame Time, when the Length

Animal OEconomy. 75

 Length of the Trunk was encreafed to eight Feet. And the fame Change of Velocity, but in a left Degree, was produced by lengthening any of the other Branches; and therefore, the Velocity in a given Pipe will be greater or left, ceteris paribus, as any of the other Pipes of the Syftem is lengthened or hortensed.

Propofition VII.

F a Fluid flow through a simple System of Cylindrical Pipes, confitting of one Trunk and a certain Number of Branches; and if any Pipe of the System be obstructed or opened, contracted or dilated; the Velocity will be encreafed or dimenifbed in all the other Pipes of the System: And the Increafe or Diminution of Velocity in any one of

$$
\mathrm{K}_{2} \text { them }
$$

76 A Treatife of the
them, will be greater or le ss, ceteris paribus, as the Pipe is nearer to or farther from the obstructed or opened, contracted or dilated Pipe.

Since to obstruct or contract a Pipe, is in Effect to lengthen it ; and to open or dilate it, is in Effect to Shorten it ; the firft part of this Proposition, is true by the lat Proposition: And the fecond part of it is thus proved. When a Pipe is obstructed or contracted, that part of the moving Force which before this Change generated the Motion deftroyed in the obstructed or contracted Pipe, is not loft, but f pent in increafing the Motions in the othe Pipes which are open, and may be confidered as a new Force apply'd to the Syftem at the Place of Obstruction or Contraction, and propagated from thence to all the other Pipes of the Syftem; and there-

Animal OEconomy. 77

therefore, by the laft Propofition, the Velocities generated in thofe Pipes by this new Force, will be greater or lefs, as the Pipes are nearer to or farther from the Force, that is, as they are nearer to or farther from the Place of Obftruction or Contraction. And the contrary mult happen, when a Pipe is opened or dilated; the Velocities will then be diminifhed in all the other Pipes, and its Diminution will be greater or lefs, cateris paribus, as the Pipes are nearer to or farther from the Place of Aperture orDilatation: And therefore the Propofition is true.

Cor. If the fimple Syftem be fo conftructed, that the Velocities in its Trunk and Branches be refpectively equal to the Velocities in that principal and thole leffer Trunks of fuch a compounded Syftem of Cylindrical Pipes as I have defcribed in the fourch Propofition and

78 A Treatiरe of the
and its Scholium, through which Trunks the Fluid flows into the compounded Syftem and leffer Syftems of which it is compofed; then, whatever Change is made in the Velocities of two correfponding Pipes of the two Syftems, that Change will produce like Changes of Velocity in all the other correfponding Pipes; and by Confequence, when the Velocity is leffened in any one of the faid leffer Trunks of the compounded Syftem; it will be increafed in all the others, and its Increafe will be greater or lefs, ceteris paribus, as the Trunks are nearer to or farther from that in which the Velocity is leffened: And when the Velocity is increafed in one of the faid leffer 'Trunks, it will be leffened in all the reft : And its Diminution will be greater or lefs, ceteris paribus, as they are nearer to or farther from

Animal OEconomy. 79 that Trunk in which the Velocity is increafed.

Nat

Proof by Experiments.

A
Syftem of Cylindrical Pipes had five Branches, A, B, C, D, E, of equal Diameters and Lengths. The Branch A lay neareft to the moving Force, then B, and fo on in the Order they are mentioned. The Velocities in thefe Branches, obtained from the Quantities of Water difcharged in a given Time, were as the Numbers $94_{3}^{2}, 68,52,36_{\frac{1}{3}}^{2}, 19^{\frac{1}{1}}$, when the End of the Trunk was open; and as the Numbers $98,76_{\frac{1}{4}}^{\frac{1}{2}} 70 \frac{1}{2}, 66 \frac{1}{2}$, σ_{i}^{1}, when the End of the Trunk was fhut; and the Differences of the Velocities in the fame Pipes, when the End of the Trunk was open and thut, were $3^{\frac{\pi}{i}}, 8 \frac{\pi}{\pi}, 18 \frac{\pi}{2}, 30 \frac{\pi}{5}$, $4^{2 \frac{1}{2+2}}$

80 A Treatije of the
$4^{2 \frac{1}{25}}$. When the Branch C was fhut, the Velocities in the Branches A, B, D, E, were as the Numbers $99_{\frac{2}{2}}^{2}$, $8 \mathrm{I}_{\frac{1}{2}}^{\frac{1}{2}}, 43^{\frac{2}{4}}, 23^{\frac{1}{2}}$; and the Differences of thefe Velocities and the Velocities in the fame Branches, when C was open, were $4^{\frac{1}{3}}, 13^{\frac{1}{2}}, 7^{\frac{1}{2}}, 4^{\frac{1}{3}}$. And the fame Changes of Velocity, but in a leffer Degree, will be produced when a Pipe is only contracted.

If the Syftem had originally had but the four Branches $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}$, and afterwards the Branch C had been added; it is evident from thefe Experiments, that the Velocities in the original Branches would all have been diminifhed by the Addition of this new Branch; and that the Diminution of Velocity in any of them would have been greater or lefs, as it lay nearer to or farther from the Branch C: But the adding a new Pipe to aSyftem, will produce like Changes of Motion in the other
Pipes,

Animal OEconomy. 8 i

Pipes, as the opening or dilating an old Pipe; for by all thefe, there will be a like Abatement of the Force generating the Motion in the other Pipes.

Therefore by thefe Experiments and the Corollary of this Propofition, when any Pipe of the fimple Syftem, or any of the aforefaid Trunks of the compounded Syftem, is obitructed or opened, contracted or dilated ; the Velocity will be encreafed or diminifhed in all the other Pipes of the fimple Syftem, and all the reft of the aforefaid Trunks in the compounded Syftem; and its Increafe or Diminution in any one of thofe Pipes or Trunks, will be greater or lefs, coteris paribus, as it is nearer to or farther from the Pipe or Trunk which is obftructed or opened, contracted or dilated.

$$
\mathrm{SEC}
$$

82 A Treatile of the

SECTIONII.

Of Mufcular Motion, the Motion of the Blood, and Refpiration.

Of Mufcular Motion.

Propofition VIII.

- Ufcular Motion is performed. by the Vibrations of a very. Elaftick Atther, lodged in the Nerves and Membranes invefing the minute. Fibres of the Mufcles, excited by the Power of the Will, Heat, Woinnds, the fubtile and active Particles of Bodies, and other Caufes.

Before I enter upon the Proof of this Propofition, it will be neceffary to give a fhort Account of the Structure of a Muscle.

Animal OEconomy. $\quad 83$

A Mufcle appears to the Eye, to be compofed of two Parts of different Colours, one red, and the other white. The red is called its flelhy, and the white its tendinous Part. Some Mufcles are tendinous both at their Origin and Infertion, and flefhy only in their Middle; and others are flefhy at their Origin and in their Middle, and tendinous only at their Infertion. The flefhy Part of a Mufcle is compofed of Fibres, Membranes, Nerves, BloodVeffels, and Lympheducts. The Fibres are fmall Threads, which are fhortened when a Mufcle is contracted, and lengthened when it is dilated. The Membranes are thin Skins, which run between the Fibres, are faftened to them, and tye them together. If a Piece of Fleth be boiled, till it become very tender, and afterwards be divided and fubdivided, as far as the Eye and Hand L 2 can
can go; it will appear, that each minute Fibre in the loweft Subdivifion, is entirely furrounded by its own particular Membrane. The Membranes, if they be extremely thin, are tranfparent; and if they be thicker, they are of a whitifh Colour. The Nerves are difperfed throughout the whole flefhy Part, as may be gathered from the Pain which is produced any where in that Part by the fmalleft Wound. It has been a received Opinion, that the Nerves are fmall Pipes which contain a Fluid, called Animal Spirits, drawn off from the Blood in the Brain. But it does not appear from any Experiments, that the Nerves are Pipes; or that fuch a Fluid as they conceive Animal Spirits to be, is feparated from the Blood in the Brain; and therefore thefe Opinions are without any juft Foundation. The Nerves are not only im-

Animal OEconomy. 85

 pervious to the fmalleft Stylus, but when viewed with a Microfcope, evidently appear to have no Cavity. And when we confider the Manner, in which the Favourers of this Opinion have explained M_{u} cular M_{0-} tion by AnimalSpirits; we mult allow, that fuch a Fluid is altogether unfit for this Work. For thefe Reafons, many have thought the Nerves to be folid Threads, extended from the Brain to the Mufcles and other Parts of the Body. Sir Ifaac Newton is of this Opinion, as appears from the following Account he has given of the Nerves, in the 24 th Query of his Opticks. "I fuppofe "that the Capillamenta of the " Nerves are each of them folid " and uniform, that the vibrating " Motion of the Ætherial Medium " may be propagated along them " from one End to the other uni" formly, and without Interruption: For86 A Treatife of the
"For Obftructions in the Nerves "create Palfies. And that they "s may be fufficiently uniform, I " fuppofe them to be pellucid when " viewed fingly, tho the Reflecti"s ons in their Cylindrical Surfaces "r may make the whole Nerve " (compofed of many Capillamen"ta) appear opake and white. For "Opacity arifes from reflecting "Surfaces, fuch as may difturb and " interrupt the Motions of this Me" dium." The Blood-Veffels of a Mufcle are interwoven in the Membranes, and diftributed throughout its whole flefhy Part, as appears from its Rednefs, and from the iffuing out of Blood from a Puncture made any where in it with the fineft Needle. The Mufcles are ftocked with Lymphatick Veffels, as well as the other Parts of the Body.

I have no farther Occafion to conGider the Structure of a Mufcle, what

Animal OEconomy.
 87

I have faid being fufficient for my Purpofe, but fhall now proceed to prove the Propofition from Experiments and Obfervations.

It has been found by Obfervation, that when a Mufcle is contracted, its flefhy Fibres are fhortened and hardened, without any fenfible Change made in its Tendons; that as foon as the Contraction is over, or the contracting Force ceafes. to act, the fhortened and hardened Fibres are lengthened and foftened again; that this alternate Motion of Contraction and Dilatation continues in the Hearts of fome Animals, efpecially young ones, for a confiderable Time after they are cut out of their Bodies, and laid on a Table; that it generally continues. longer in the Hearts of Fifh, than in the Hearts of Land-Animals; and that after it has ceafed, it will be renewed again by Warmth or the pricking

$$
88 \text { A Treatile of the }
$$

pricking of a Pin, and will continue to be excited by either, efpecially Warmth, for fome little time, till the Heart wholly lofes its Power of moving; that as the Heart cools by Degrees, fo its Motion abates gradually, its Contractions and Dilatations growing lefs and lefs frequent and ftrong, till at laft they wholly ceafe; and that the Heat of the Heart is greater, and its Motion more frequent and frong, in an ardent Fever and the hot Fit of an Ague, than in its natural State.

Hence it appears, that Heat is a remote Caufe both of the Frequency and Strength of the Motion of the Heart ; and confequently, one of the remote Caules of the Motion of a Mufcle.

We find by Experience, that by the Power of the Will we can move the Mufcles of our Limbs with various Degrees of Force; that there

Animal OEconomy. 89

 is not the leaft fenfible Difference in point of Time between willing the Motions of the Mufcles, and the Motions themfelves; that Mufcles contracted by the Power of the Will, dilate again the veryInftant in which the Soul ceafeth to exercife that Power; and that the Soul lofeth the Power of moving the Mufcles, and perceiving Pain from Wounds made in their flefhy Parts, when their Nerves are cut quite thrcugh, tied ftreight, or intirely obftructed any other Way.Hence it appears, that the Nerves are the Inftruments whereby the Will gives Motion to the Mufcles: And it does this, by producing fome kind of Motion in thofe Ends of the Nerves which terminate in the Brain, which Motion is propagated from thence thro' their folid, pellucid and uniform Capillamenta into

90
A Treatife of the
the Mufcles. For if the Nerves were intirely at reft, and no Motion was propagated thro them, they could never by the Power of the Will, or any other Caufe, produce Motion in the Mufcles.

On laying bare the great Mufcle of the hinder Leg of a Dog, and the great Nerve which accompanies the Crural Artery and Vein ; I have obferved, that when the Tendon was wounded, the Dog fhewed very little Uneafinefs; but expreffed great Pain, on wounding the flefhy Part of the Mufcle; and much greater Pain, on wounding, or in the Inftant of tying the Nerve; that a Contraction of the Mufcle was produced, on wounding its flefhy Part; and a much ftronger Contraction on wounding, or in the Inftant of tying the Nerve ; and that after the Nerve was cut quite through, or tied

$$
\text { Animal OEconomy. } 9 \text { I }
$$ tied freight, great Uneafinefs and Pain with moot violent Struggles were produced, as often as a new Wound was inflicted, or a new Ligature made, above the lift Section or Ligature, in that Part of the Nerve which communicated with the Brain; but neither Pain nor Contraction of the Mufcle followed, on wounding or tying that Part of it which communicated with the Muscle and Limb. And I have likewife obferved on trepanning Dogs, and wounding feveral parts of their Brains, that convulfive Motions of the Limbs have ever been producoed, on wounding the Medulla oblongata, but never on wounding the Dora Mater, or Cortical Part.

Hence likewife it appears, that the Nerves are the principal Inftruments of Senfation and Motion; that thee Effects are ftronger or M 2 weaker,

92

A Treatife of the
weaker, as more or fewer of the nervous Capillamenta are tyed or wounded ; that thefe Effects are the fame, in whatever part of a Nerve the Secrion or Ligature is made; and that the Soul perceives Pain, and exerts its Power of producing Mufcular Motion, only at the Origin of the Nerves in the Brain.

The exceeding Quicknefs of this Motion paffing from the Brain thro the Capillamenta of the Nerves to the moft diftant Mufcles in an Inftant, and its Ceffation the very Moment the Caufe which produced it ceafes to act, thew it to be the vibrating Motion of a very elaftick Fluid. For it is the Nature of the vibrating Motion of an elaftick Fluid to be very fwift, and to ceafe the very Inftant the Caufe which produced it ceafes to act. A vibrating Motion excited in our Air

Animal OEconomy. 93

by the Tremors of Bodies for the Production of Sounds, moves at the Rate of 1142 Englifh Feet in a fecons Minute of Time, and ceafes the very Infant in which the Tremon of the Bodies ceafe.

Now fince this Motion begun in the Nerves at their Origin, has been proved to be the vibrating Motion of a very elaftick Fluid; and fine the other Phenomena of Nature abfolutely require fuck an elaftick Fluid, as is the other defcribed by Sir Ifaac Newton; and fince Caufes are not to be multiply'd without Neceffirry: Therefore it mull be granted, that this Motion begun in the Nerves at their Origin, is the vibrating Motion of that Ether; the Properties of which, gathered from the Phenomena, are thefe which follow.

This 生ther is exceedingly more rare and Subtile than Air, and ex-

94 A Treatise of the

ceedingly more elaftick and active: It readily pervades all Bodies, and by its elaftick Force is expanded throw' all the Heavens. If it be 700000 times more elaftick than our Air, it is above 700000 times more rare. Its elaftick Force in proportion to its DenCity, is above 490000000000 times greater than the elaftick Force of the Air is in Proportion to its Denfity. It is rarer within Bodies, than in the empty Spaces between them; and in paffing from Bodies into empty Spacen, it grows denser and denfer by Degrees; and the Increase of its Denfity at any Diftance from the Centre of Gravity of a Body, is as the Quanttity of Matter in the Body directly, and the Square of that Diftance inverfly: And it is rarer within dense Bodies, than within rare Bodies. Alt Bodies endeavour to recede and go from the denser Parts of it, towards the rarer; and the Force wherewith

Animal OECONOMy. 95

a Body endeavours to recede, is as the Quantity of Matter inthe Body, and the Increase of the Denfity of the AEther at the Centre of Gravity of the Body, taken together. When it is put into a vibrating Motion by the Rays of Light, the Will of Animals, or other Caufes; itsVibrations or Pulfes move fwifter than Light, and by Confequence, above 700000 times fwifter than Sounds. Its Denfity and expanfive Force, are both increafed in Proportion to the Strength and Vi_{i} gour of its vibrating Motion; which Motion, like the vibrating Motion of the Air for the Production of Sounds, grows weaker, as the Square of the Diftance from the Place in which it is excited increafes. And laftly, its vibrating Motion is regularly propagated thro' Bodies made of uniform dense Matter, but is reflected, refracted, interrupted or difordered by any Unevennefs in the Bodies.

96 A Treatife of the
Thefe are the principal Proper ties, with which this Æther muft neceffarily be endued; which I thought fit to mention, before I fhew the Manner in which it caufes the Motion of the Mufcles.

When by the Power of the Will a vibrating Motion is excited in the不ther, in thofe Ends of the Nerves which terminate in the Brain ; that Motion is in an Inftant propagated thro' their folid and uniform Capillamenta to the Membranes of the Mufcles, and excites a like Motion in the Æther lodged within thole Membranes ; and a vibrating Motion raifed in the Æther within the Membranes, increafes its expanfive Force; an Increale of that Force fwells the Membranes; a Swelling of the Membranes caufes a Contraction of the flefhy Fibres; and that Contraction, a Motion in the Parts to which the Extremities of the Mufcles

Animal OEconomy. 97

 Mufcles are faftened. Thus the Limbs and other Parts of Animals are moved by their Mufcles, each of which has its two Ends faftened to two Bones, whereof one is always more moveable than the other; on which Account, when its flefhy Fibres are flortened by the fwelling of the Membranes, the more moveable Bone is drawn towards that which is more fixed, by means of an intervening Joint upon which it turns.As foon as the Will ceafes to act, the vibrating Motion of the Æther cauled by that Action ceafes; in like manner as the Pulfes of the Air caufing Sounds ceafe, on a Ceffation of the Tremors of fonorous Bodies, by which they are excited; and a Ceffation of the vibrating Motion of the Æther, caufes a Diminution of its expanfive Force; and a Diminution of that Force, $\mathrm{N} \quad$ gives

98 A Treatife of the
gives an Opportunity to the dilated Membranes to contract, by the attractive Powers of their Parts, and thereby to lengthen the flefhyFibres. Another Caufe of the lengthening of the flefhy Fibres and Dilatation of a Mufcle, is a vibrating Motion, éxcited in the Æther lodged in the flefhy Fibres by their Contraction: For that vibrating Motion will increafe the expanfive Force of the Ether, and that increafed Force will lengthen the Fibres, the very Inftant the Caufe which contracted them ceafes to act. Thefe two Forces added together, make the whole Force whereby a contracted Mufcle is dilated: For the Experiments a-bove-mentioned fully prove, that the Soul has no immediate Power over the flefhy Fibres. Thus the Mufcles of Animals are moved by the Æther, when put into a vibra-
ting

Animal OEconomy. 99

 ting Motion by the Power of the Will.I have fhewn that Heat, Punctures or Wounds, and Ligatures on the Nerves in the Inftant they are made, have a Power of contracting the Mufcles: And from the Effects of vomiting and purging Medicines, and fome Poifons, we learn, that the fubtile and active Particles of fome Bodies have a like Power: But fince all thefe Things, however different they are in themfelves, do notwithftanding produce the lame Effect which theWill does, they muft do it in the fame Manner, that is, by exciting a vibrating Motion in the Æther within the Nerves and Membranes of the Mufcles. And therefore the Propolition is true.

Cor. I. The Motion of the Mufcles becomes weak, either from too weak a vibrating Motion of the \mathbb{E} -

N 2
ther

100 A Treative of the
ther in their Membranes and Fibres; or an Unfitnefs in the Membranes and Fibres to be moved with Vigour by a due Degree of that vibrating Motion. The vibrating Motion excited by a given Force becomes weak, when the Æther becomes rare; and the Æther becomes rare, when the Membranes and Fibres become denfe, from Moifture foaking into their Pores, from Compreffion, or other Caufes. And the Membranes and Fibres become unfit to be moved with Vigour, when they are rendered ftiff by Age, too hard Labour, or other Caufes.

Cor. 2. Mufcles grow larger and Itronger by moderate Exercife: For the expanfive Force of the Ether mult be increafed, before it can move the Mufcles; and a frequent Increafe of this Force in Mufcles much moved, mult of Neceffity in-
creafe

Animal OEconomy. roi

 creafe both their Magnitudes and Strengths. Hence labouring Perfons have larger and ftronger Mufcles, than Perfons who lead a fedentary and inactive Life.Cor. 3. The Blood moving thro' a Mufcle, is preffed forward by the Force of its Contraction; but after a Mufcle is contracted, if it be kept in that State by the conftant Action of the Force which contracted it, lefs Blood will flow through it in a given Time than did before: For the Blood-Veffels interwoven in the Membranes, are compreffed and contracted by the fwoln Membranes and fhortened and hardened Fibres: And this Contraction of the Veffels, while it is exerting, preffes the Blood forward; but afterwards hinders the Blood from flowing through the Mufcle in that Quantity it did before. Hence
Ex-

102 A Treatije of the
Exercife performed by the Motion of the Mufcles, accelerates the Motion of the Blood; and Cramps and other permanent Convulfions retard it.

Cor. 4. The Magnitude of a Mufcle may be but little altered by its Contraction: For if the Contraction of the flefhy Fibres be nearly equal to the Swelling of the Membranes, its Magnitude will continue much the fame, though its Figure be changed.

Cor. 5. The Forces of correfponding Mufcles in healthful Bodies, are meafured by their Weights, and the Strengths of the vibrating Motions of the Æther in them, taken together.

Cor. 6. If a great Increafe of the vibrating Motion of the Æther in the Nerves and Membranes of one

Part

Animal OEconomy. 103

Part of the Body be, from fome Caufe, attended with a Diminution of its vibrating Motion in the Nerves and Membranes of other Parts; then it may be in the Power of Art to quiet a Difturbance in one Part, by raifing a ftronger Difturbance in another: As by Blifters, Cauteries, and other powerfully ftimulating Bodies, applied to one Part of a Human Body, we often relieve Pain, and quiet convulfive Motions in other Parts of it. The Exiftence and Nature of fuch a Caufe I thall confider more fully in its proper Place, it being befide my Defign to enlarge upon it at prefent.

104
A Treatise of the

Of the Motion of the Blood.

Propofition IX.

$\urcorner \mathrm{HE}$ Blood moves in the Artieres and Veins with a kind of Circular Motion.

Harvey has proved this from Experiments and Obfervations: For he has shewn, that the Blood flows out of the Trunk of the Vena cava, into the right Auricle of the Heart ; out of that, into the right Ventricle ; thence, throw' the Lungs, into the left Auricle and Ventricle; out of the left Ventricle, into the Aorta; whole Branches convey it to all Parts of the Body, except the Lungs, and pour it into the fmalleft Branches of the Veins ; out

Animal OEconomy. tos of which it paffes into Branches fill larger, till at laft, by the Vena cava it is brought back to the Heart. And this Motion of the Blood from and to the Heart, is called its Circulation, or Circular Motion.

The Heart and Arteries act upon the Blood, in generating and keeping up its Motion, in the following Manner. When the Auricles are filled with Blood by the Veins, the right Auricle by the Vena cava, and the left by the PulmonaryVein, they both contract at one and the fame time, and prefs the Blood which they contain into the Ventricles; and when the Ventricles are filled with Blood, they likewife contract at one and the fame Time, and prefs the Blood which they contain into the Arteries; the right Ventricle into the Pulmonary Artery, and the left into the Aorta. The Arteries are dilared by the Blood, forcibly preffed
io6 A Treatije of the
into them by the Ventricles; and as foon as the Ventricles are empticd, and their Contraction is over, the dilated Arteries contract, and prefs the Blood forward into the Veins. And thus the Motion of the Blood is generated and kept up, by the Forces of the Heart and Arteries.

The Blood is kept from regur* gitating, by the V alves of the Heart and Veins. The Valves at the Entrance of the Auricles into the Ventricles, open when the Auricles contract, and permit the Blood to flow into the Ventricles; and thut when the Ventricles contract, and prevent its Return into the $\mathrm{Au}-$ ricles. The Valves at the Origins of the Aorta and Pulmonary Artery, open when the Ventricles contract, and fuffer the Blood to flow into the Arteries ; and hhut when the Arteries contract, and hinder

Animal OEconomy. IO7

 der it from flowing back into the Ventricles. And the Valves of the Veins open to let the Blood move forward towards the Heart; and fhue to prevent its Return into the Arteries.Cor. I. The two Ventricles of the Heart throw out equal Quantities of Blood in each Syftole: For if they threw out unequal Quantities; then, fince they always contract together, more or lefs Blood would flow into the Lungs, than flows oue of them, in a given Time: Which mult of Neceflity foon put an End to Life.

Cor. 2. As much Blood fows. thro' each Ventricle of the Heart, and through the Lungs; as flows through all the reft of the Body in the fame Time.

$$
02
$$

Cor.

Cor. 3. The Arteries have a Pulle, and the Veins no Pulle : For the Arteries have a ftronger mufcular Coat than the Veins, from their fuftaining a greater Preffure againft their Sides from the Blood forced into them by each Syftole of the Heart ; and they fuftain a greater Preffure againft their Sides than the Veins, from a greater Quantity of Blood lying before them, which gives a greater Refiftance to the Blood forced into them by the Heart. Now the Sides of both Arteries and Veins being foff and dilatable, it is evident, that the whole Syttem of Veffels muft fwell, when Blood is forcibly preffed into it by the Heart in its Syftole; and endeavour to contract again, when the Force of the Heart ceafes to act in its Diaftole: But when the Arteries and Veins begin to contract after every Syttole of the Heart, the Arte-

Animal OEconomy. rog ries by the greater Strength of their Mufcular Coat, overpower the Veins; and by preffing the Blood into them, hinder them from contracting: Therefore the Arterics by dilating and contracting, have a Pulfe; and the Veins for want of this alternate Motion, have no Pulfe.
an

Propofition X.

THE Velocity of the Blood is lefs in the Sum of the Branches of both Arteries and Veins, than in their refpective Trunks; and it is le/s in the Veins, than in their corresponding Arteries.

For it has been found by meafuring the Veffels, that the Branches of an Artery or Vein taken all together, are wider than the Trunk out of which they arife; and that the
the Veins are wider than their correfponding Arteries: And therefore the Propofition is true, by the sth Corollary of the 5 th Propofition.

Cor. i. Hence it appears, that the Velocity of the Blood is continually leffened in the Arteries from their Trunks to their fmalleft Branches; and increafed continually in the Veins from their fmalleft Branches to their Trunks: And by Confequence, that the Velocity is leaft in the laft and fmalleft Branches of the Arteries and Veins.

Cor. 2. Since the Velocity of the Blood is leaft in the fmallet Branches of the Arteries and Veins; it neceffarily follows, that the Blood will be more liable to be obftructed by Cold and other Caufes, in its Courfe thro' thofe Veffels, than thro' any others.

Propofition

Animal OEconomy. iti迢

Propofition XI.

THE Velocity of the Blood in one and the fame Artery or Vein, is the fame both in the Syftole of the Heart, and in its Diaftole; when the Arteries are dilated, and when they are contraited.

For fince the Veins have no Pulfe, the Blood muft neceffarily flow thro' them with the fame Velocity when the Arteries are dilated, and when they are contracted; which it could not do, if it moved fafter througli the Arteries when they are dilated, than when they are contracted; in the Syftole of the Heart, than in its Diaftole : And therefore the Propofition is true.

Cor. 1. Hence it appears, that while the progreffive Motion of the Blood

112 A Treatife of the
Blood continues the fame ; theForce which generates this Motion, muft by its conftant Action continually generate as much Motion as is deftroyed by the Refiftance of the internal Surface of the whole Syftem of Blood-Veffels; otherwife it would be impoffible, that the Velocities of the Blood in the fame Veffels fhould be the fame in the Syftole of the Heart, and in its Diaftole; when the Arteries are dilated, and when they are contracted.

This will not appear ftrange when we confider, that there are other Motions in Nature which are uniform, notwithftanding the conflant Action of a given moving Force. Of this kind is the Motion of a Ship, generated by a Wind blowing conftantly and uniformly; which Motion is at firft accelerated, till as much Motion is continually communicated to the Water and

Animal OEconomy. II 3

Air by the Ship moving along; as is generated in it by the conftant and uniform Action of the Wind: And after that, it continues uniform, notwithftanding the conftant Action of the Wind. Of this kind alfo, is the Motion of a Body defcending in Water ; which Motion is accelerated, till the Motion communicated to the Water by the defcending Body, becomes equal to the Motion generated in the Body by the conftant and uniform Action of its Weight in Water ; and after that, the Motion continues uniform, notwithftanding the conftant Action of this Weight.

00690300060000000000

Propofition XII.

THE Velocities of the Blood in the corresponding Blood-VefSels of Bodies Situated alike with reP

Spect

II 4 A Treative of the
Spect to the Horizon, are in the fubduplicate Ratios of the Diameters of the Veffels, that is, V.v:: VD. Vd.

For from Anatomy and the Similarity of the correfponding Parts of human Bodies we learn, that their Syitems of Blood-Veffels have the fame Number of correfponding Veffels; and that correfponding Veffels have like Situations and Capacities, in Bodies fituated alike with refpect to the Horizon, that is, any two correfponding Veffels are fituated alike with refpect to the reft of the Veffels, and their Capacities are as the Capacities of the whole Syftems.

The Forces of the Hearts are as their Weights, and the Strengths of the vibrating Motions of the Ether in their Nerves and Membranes, taken together, by Cor. 5. Prop. 8. But the Strengths of the vibrating Motions

Animal OEconomy. irs
Motions of the Æther, fetting afide the Power of the Soul and other diAturbing Caufes, are as the Heats of the Hearts; and the Heats of the Hearts, as the Heats of the Blood; and the Heats of the Blood are much the fame in all healthful Bodies, as I have found by the Thermometer: And therefore, fetting afide the Power of the Soul and other difturbing Caufes, the Forces of the Hearts are as their Weights. The Weights of the Hearts of a Atrong Man and a Child newly born, were as 16 and I ; the Diameters of their Aortas as 2 and I; and the Lengths of their Bodies as 4 , and r : Now fince the Lengths of correfponding Blood-Veffels are as the Lengths of the Bodies, and the Diameters of correfponding Veffels as the Diameters of the Aortas in Bodies fituated alike with refpect to the Horizon; it is evident from this

$$
\text { P } 2 \quad \text { Infance }
$$

II 6 A Treatife of the
Inftance, that the Weights of the Hearts are as the Capacities of correfponding Veffels, or as the Ca pacities of the whole Syftems, in Bodies fituated alike with refpect to the Horizon: And therefore the Forces of the Hearts, when they are not difturbed by the Power of the Soul or other Caufes, are as the Capacities of correfponding BloodVeffels, or as the Capacities of the whole Syftems in Bodies fo fituated; and the Forces generating the Motions in correfponding Veffels, are as the Capacities of thofe Veffels, and by Confequence, as the whole Forces of their Hearts. And farther if we confider, that the Syftem of Blood-Veffels fwells or contracts as the Force of the Heart is increafed or leffened by the Soul, Heat or Cold, or other Caufes; and on the contrary, that the Force of the Heart is increafed or leffened, as the

Animal OEconomy. ing

 the Syftem fwells or contracts by Heat or Cold; no Doubt can be made, but that the Forces of the Hearts are ever propurtional to the Capacities of their refpective Syftems of Blood-Veffels; and that the Forces generating the Motions in correfponding Veflels, are as the whole Forces of their Hearts in Bodies fituated alike with refpect to the Horizon.And thefe Things being true, the Propofition is true, by the Firft Corollary of the Fourth Propofition.

Cor. I. Hence it appears, that the Velocity of the Blood increafes continually from the Birth, till Bodies are arrived at their full Lengths; and afterwards, it increafes or leffens in the fame Bodies, as their Syftems of Blood-Veffels fwell or contract, either from an Increafe or Diminution of the Quantity, or a Diminution or Increafe of the Denfity of the Blood.

118 A Treatife of the
Cor. 2. When healthful Bodies are fituated alike with refpect to the Horizon, and their Hearts are free from the Influences of difturbing Caufes; the Velocities of the Blood in correfponding Blood-Veffels, are in Ratios compounded of the fubquadruplicate Ratios of the Quantities of Blood contained in their whole Syftems of Blood-Veffels directly, and the fubquadruplicate Ratios of the Lengths of the Bodies inverlly, For the Heat of the Blood is the fame in Bodies under thefe Circumftances, as I have found by the Thermometer, and confequently its Denfity is given; but the Denfity of the Blood being given, the Capacities of correfponding BloodVeffels will be as the Quantities of Blood contained in them, or as the Quantities contained in the whole Syftems; therefore, putting Q and q for the Quantities contained in

Animal OEconomy. ing

 two whole Syftems, D^{2} L. $\mathrm{d}^{2} 1::$ Q. q;whence $\sqrt{ }$ D. $\sqrt[V]{ }:: \frac{Q^{\frac{\pi}{4}}}{L^{\frac{2}{4}}} \frac{q^{\frac{7}{4}}}{1^{\frac{1}{4}}}:$ But by this Propofition, V.v:: $\sqrt{ } \mathrm{D} . \sqrt{ } \mathrm{d}$; and therefore in Bodies under the Circumftances mentioned in this Corollary, V.v:: $\frac{Q^{\frac{T}{4}}}{L^{\frac{1}{4}}} \cdot \frac{\frac{q}{1}_{\frac{1}{4}}^{1^{\frac{1}{4}}}}{\frac{1}{4}^{0}}$

Cor. 4. If two healthful Bodies of equal Lengths, or one and the fame Body at two different Times, be fituated alike with refpect to the Horizon, and their Hearts be free from the Influences of diftarbing Caufes; the Velocities of the Blood in any two correfponding Blood-Veffels of the two Bodies, or in any one and the fame Blood-V effel of the fame Body at two different Times, will be in the fubquadruplicate Ratios of the whole Quantities of Blood contained

120 A Treatije of the
tained in the two Bodies, or in the fame Body at thofe different Times, by the laft Corollary: If $L=1$; then will $V \cdot v:: Q^{\frac{T}{f}} \cdot q^{\frac{1}{4}}$.

That the Velocities of the Blood as they are expreffed in this Corollary, may be found out more eafily, I have added the following Table: Which in the two Columns under Q, contains different Quantities of Blood; and in the two Columns under V, different Velocities expreffed in the biquadrate Roots of thofe Quantities. For Inftance, if the Quantities of Blood in two different Bodies of equal Lengths, or in one and the fame Body at two different Times, be as 20 and 18 ; the Velocities in the correfponding Blood-Veffels of the two Bodies, or in the fameBlood-Veffel of the fame Body at different Times, will be as the Numbers 21147 and 20597 , if the

Animal OEconomy, izi

 the Bodies be under the Circumftances fuppofed in this Corollary.| | V | Q | V |
| :---: | :---: | :---: | :---: |
| | 10000 | 26 | $\overline{22581}$ |
| | 11892 | 27 | 22745 |
| 3 | 13160 | 28 | 23003 |
| 4 | 14142 | 29 | 23206 |
| 5 | 14953 | 30 | 23403 |
| 6 | 15650 | 31 | 23596 |
| 7 | 16265 | 32 | 23784 |
| 8 | 16817 | 33 | 23968 |
| 9 | 17320 | 34 | 24147 |
| 10 | 17790 | 35 | 24323 |
| 11 | 18211 | 36 | 24495 |
| 12 | 18612 | 37 | 24663 |
| 13 | 18988 | 38 | 24828 |
| 14 | 19343 | 39 | 24990 |
| 15 | 19680 | 40 | 25149 |
| 16 | 20000* | 41 | 25304 |
| 17 | 20302 | 42 | 25457 |
| 18 | 20597 | 43 | 25607 |
| 19 | 20878 | 44 | 25755 |
| 20 | 21147 | 45 | 25900 |
| 21 | 21407 | 46 | 26043 |
| | 21657 | 47 | 26183 |
| 23 | 21899 | 48 | 26321 |
| 24 | 22134 | 49 | 26457 |
| 25 | 22361 | 50 | 26591 |

Cor.

I22 A Treatije of the
Cor. 4. If the Diameters of correfponding Blood-Veffels be in the fubduplicate Ratios of the Lengths of the Bodies; the Velocities in thofe Veffels will be in the fubquadruplicate, and the Capacities of the whole Syftems in the duplicate Ratios of the Lengths of the Bodies. If D.d :: $\sqrt{ } \mathrm{L} . \sqrt{ } 1$; then will V. v:: $L^{\frac{1}{4}} .1^{\frac{1}{4}} ;$ and $D^{2} L . d^{2} 1:: L^{2} .1^{2}$.

From the Infance mentioned in the Proof of this Propofition it is evident, that thefe Proportions of the Diameters of correfponding Blood-Veffels and of the Capacities of the whole Syftems obtain in fome Bodies, when fituated alike with refpect to the Horizon; and it is as certain, that they do not obtain in all Bodies fo fituated; becaufe of Bodies of the fame Length, fome, from a different Ufe of the Nonnaturals or other Caufes, have lar-

Animal OEconomy. 123

 ger Blood-Veffels than others : Now if thefe Proportions be obferved in the moft perfect and beft proportioned Bodies, they will likewife obtain in all Bodies of different Lengths, taking thofe of each Length one with another, when they are fituated alike with refpect to the Horizon, that is, the mean Diameters of correfponding BloodVeffels of Bodies of different Lengths fo fituated, each Mean being taken from a confiderable Number of Diameters of correfponding Blood-Veffels of Bodies of the fame Length, will be in the fubduplicate; and the mean Capacities of the whole Syftems in the duplicate Ratios of the Lengths of the Bodies: Otherwife there could be no Regularity and Uniformity preferved in; the Species.$$
Q_{2} \quad \text { This }
$$

124. A Treatife of the

	晏 $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$	
72	2913	5184
66	2850	4356
60	2783	3600
54	2711	2916
48	2632	2304
42	2546	1764
36	2449	1296
30	2340	900
24	2214	576
18	2059	324

This Table contains in the firft Column, the Lengths of Bodies in Inches; in the fecond, the true or mean Velocities of the Blood in the correfponding Blood-Veffels of Bodies fituated alike with refpect to the Horizon; and in the third, the true or mean Capacities of the whole Syftems of Blood-Veffels of Bodies of thofe Lengths. For Inftance,

Animal OEconomy. i25

 ftance, the true or mean Velocities of the Blood in the correfponding Blood-Veffels of Bodies alike fituated whofe Lengths are 72 and 36, are as the Numbers 2913 and 2449 ; and the true or mean Ca pacities of their whole Syftems of Blood-Veffels, as the Numbers 5184 and 1296.Cor. 5. If the Diameters of correfponding Blood-Veffels of Bodies fituated alike with refpect to the Horizon, be as the n Power of the Lengths of the Bodies; the Velocities in thofe Veffels will be as the $\frac{n}{2}$ Power; and the Capacities of the whole Syftems, and Quantities of Blood if the Forces of the Hearts are not difturbed, as the ${ }^{2 n+r}$ Power of the Lengths of the Bodies, that is, $V \cdot v:: L^{\frac{n}{2}} \cdot 1^{\frac{n}{2}}$, and $D^{2} L$. $d^{2} l::$ $L^{2 n+1} \cdot 1^{2 n+1}$, and $Q . q:: L^{2 n+r} \cdot 1^{2 n+r}$ if $D^{2} L \cdot d^{2} 1:: Q . q$.

126 A Treatise of the
For Example, If the Diameters of correfponding Veffels be in the fubtriplicate Ratios of the Lengths of the Bodies, and the Lengths of the Bodies be 72 and I 8 ; the Ve locities will be as the Numbers 126 and 100; and the Capacities of the Syftems and Quantities of Blood, as the Numbers 10 and I.

Propofition XIII.

THE Velocities of the Blood in the corresponding Blood-Veffels of Bodies Situated alike with respect to the Horizon, are in Ratios compounded of the simple Ratios of the Magnitudes of the Quantities of Blood thrown out of their Hearts in one Syntole directly, and of the duplicate Ratios of the Diameters of the Veffels and the pimple Ratios of the Times of one Syftole inverfly. If K, k denote the

$$
\mathrm{Mag}_{-}
$$

Animal OECONOMY. I27 Magnitudes of the Quantities of Blood thrown out of the Hearts of two Bodies in one SyIole, and T, t the Times
of one Syfole ; I fay, that V.v $:: \frac{\mathrm{K}}{\mathrm{D}^{2} \mathrm{~T}}$. $\overline{d^{2} \mathrm{t}}$.

For the Velocities of the Blood in any two correfponding BloodVeffels, are directly as the Spaces defrribed by the Blood in the Times of one Syftole, and inverfly as thole Times: But the Spaces defcribed by the Blood in the Times of one Syftole, are as the Magnitudes of the Quantities of Blood which flow into thofe Veffels in the Times of one Syftole apply'd to the Orifices or Squares of the Diameters of the Veffels; and the Magnitudes of thofe Quantities are as the Magnitudes of the Quantities thrown out of their Hearts in one Syftole, if the Bodies be fituated alike with refpect

128 A Treatife of the
to the Horizon: And therefore, the Velocities in the correfponding Blood-Veffels of Bodies fo fituated, are in Ratios compounded of the fimple Ratios of the Magnitudes of the Quantities of Blood thrown out of their Hearts in one Syftole directly, and of the duplicate Ratios of the Diameters of the Veffels and the fimple Ratios of the Times of one Syftole inverfly: Which was to be proved.

Cor. I. If the Magnitudes of the Quantities of Blood thrown out of the Hearts of two Bodies in one Syftole, be as the Capacities of any two correfponding Blood-Veffels; the Velocities in thofe Veffels will be as the Lengths of the Bodies directly, and as the Times of one Syftole of their Hearts inverfly. If K. $\mathrm{k}:$:
$D^{2} L \cdot d^{2} l$; then will $\mathrm{V} . \mathrm{v}:: \frac{\mathrm{L}}{\mathrm{T}} \cdot \frac{1}{\mathrm{t}}$.

Animal OEconomy. i29
This Corollary obtains in Bodies which are fituated alike with refpect to the Horizon, and whofe Hearts are not influenced by difturbing Caufes : For the Hearts of Bodies under thefe Circumftances, will throw out in each Syftole Quantities of Blood whofe Magnitudes are equal to the Capacities of their Ventricles; but the Capacities of the Ventricles are as the Magnitudes of the Hearts; and the Magnitudes of the Hearts are as their Weights; (for I have found their Denfities to be fo nearly equal, that their Differences may be neglected) and the Weights of the Hearts are as their Forces; and their Forces as the Capacities of correfponding Blood-Veffels by the Proof of the 12 th Propolition; and therefore K. $\mathrm{k}:: \mathrm{D}^{2} \mathrm{~L} . \mathrm{d}^{2} \mathrm{l}$.

Cor. 2. The true Times of one Syftole of the Hearts of regular and R well-

I 30 A Treatise of the
well-proportioned Bodies of different Lengths, and the mean Times of one Syftole of the Hearts of all Bodies of different Lengths, each Mean being taken from a confidetable Number of Bodies of the fame Length, are, when the Bodies are fituated alike with reflect to the Horizon and their Hearts are free from the Influences of all difturbing Caufes, as the biquadrate Roots of the Cubes of the Lengths of the Bodies, that is, T.t:: $L^{\mp} .1^{\frac{3}{4}}$. For in the fe Cafes, V.v:: $L^{\frac{1}{4}} \cdot 1^{\frac{1}{7}}$ by the $4^{\text {th }}$ Corollary of the 12 th Proposition, and V.v:: $\frac{\mathrm{L}}{\mathrm{T}} \frac{1}{\mathrm{t}}$ by the preceding Corollary of this Proposition; and therefore $L^{\frac{7}{4}} \cdot 1^{\frac{1}{2}}:: \frac{L}{\bar{T}}, \frac{1}{\mathrm{t}}$; whence T . $t:=L^{\frac{3}{4}} .1^{\frac{3}{4}}$.

Animal OEconomy. I3I

隺

Propofition XIV.

HE Velocities of the Blood in the corresponding Blood-Veffils of Bodies Situated alike with respect to the Horizon, are in Ratios compounded of the simple Ratios of the Magnitudes of the Quantities of Blood thrown out of their Hearts in ane Syfole and the fimaple Ratios of the Numbers of their Pulfes in a given Time directly, and the duplicate Ratios of the Diameters of the corresponding Veffels inver/ly. If P, p denote the Numbers of Pulfes in a given' Time of two Bodies Situated alike with respect to the Horizon; then will $\mathrm{V} . \mathrm{v}:: \frac{\mathrm{KP}}{\mathrm{D}^{2}} \cdot \frac{\mathrm{kP}}{\mathrm{d}^{i}}$.

132 A Treatife of the

Proof by Experiments.
Took the Pulfes in a Minute, and meafured the Lengths, of a great Number of Bodies: I took the Pulfes when the Bodies were fitting, that they all might be fituated alike with refpect to the Horizon ; and in the Morning before Breakfaft, that their Hearts might be as free as poffrble from the Influences of all difturbing Caufes: And when I had got a very large Stock of Obfervations, I took the Means of the Pulfes, each Mean from a confiderable Number of Bodies of the fame Length; and found thofe Means to be nearly as the biquadrate Roots of the Cubes of the Lengths of the Bodies inverfly, that is, nearly as the mean Times of a Syftole of their Hearts inverlly, by Cor. 2. Prop. I 2.

Animal OEconomy. I33

And fince the mean Numbers of Pulfes in a Minute of all Bodies, are the true Numbers of Pulfes in a Minute of fingle Bodies of the fame Lengths which are regular and wellproportioned, the Numbers of Pulfes in a Minute of regular and wellproportioned Bodies taken fingly, will likewife be as the biquadrate Roots of the Cubes of their Lengths, that is, as the Times of a Syftole of their Hearts inverfly by the aforefaid Corollary. Now fince in thefe Inftances, the Numbers of Pulfes in a Minute are inverfly as the Times of one Syftole, and there is no Reafon why this Proportion fhould not be univerfal; I fhall therefore conclude, that it is fo: And that in all
Bodies, $\mathrm{P} \cdot \mathrm{p}:: \frac{\mathbf{I}}{\mathrm{T}} \cdot \frac{\mathrm{I}}{\mathrm{t}}: \mathrm{K}_{\mathrm{K}}$ but by the laft Propofition, V.v:: $\frac{K}{D^{2} T} \cdot \frac{\mathrm{~K}}{\mathrm{~d}^{2} \mathrm{c}}:$ And therefore, $V \cdot v:: \frac{K P}{D^{2}} \cdot \frac{k p}{d^{2}}$.

134 A Treatife of the

	.ㄷ		
	72	65	65
	68	67	68
	60	72	74
14	55	77	79
12	51	82	84
9	46	90	9 I
6	42	97	97
3	35	I 13	I I I
2	32	120	II9
I	28	126	132
$\frac{1}{2}$	25	137	144
0	18	I 50	I 84

To thew the near Agreement of the Pulfes from Obfervation with the Pulfes by the Theory, I have added this Table: Which contains in the firt Column, the mean Ages of growing Bodies when they arrive at the Lengths in Inches flanding

Animal OEconomy. I35

 over againft them in the fecond Column ; in the third Column, the mean Numbers of Pulfes in a Minute in the Morning before Breakfaft when the Bodies were fitting; and in the fourth Column, the Numbers of Pulfes in a Minute fuppofing them to be inverfly as the biquadrate Roots of the Cubes of the Lengths of the Bodies, and making 65 the firft Number in the third Column found from Obfervation, the firt Number in this. In making this Table, I neglected Fractions which were not near an Unit, and put an Unit inftead of thofe which were.It is to be obferved, that the Number of Pulfes from Obfervation of a Child newly born, falls confiderably fhort of the Number of Pulfes by the Theory. The Pulfe of a Child newly born can fearcely be perceived. I have often try'd to feel

$$
\text { I } 36 \text { A Treatije of the }
$$

feel it and count its Numbers, but never fucceeded: Once I reckon'd I go Beats or more in a Minute in a Child feven or eight Days old. And therefore, though I have made I 50 the mean Number, yet I cannot fay, that it is the true mean Number; but fuppofing it to be fo, its falling fo much fhort of the Theory, may in fome meafure be accounted for from the Nature of that Caufe which difpofes Infants to fleep almoft perpetually ; which Caufe by weakening the vibrating Motion of the Æther in the Nerves and Membranes of the Heart, muif neceffarily make the Pulfe flower than it otherwife would be.

Cor. I. The Velocities of the Blood in the correfponding BloodVeffels of Bodies which are fituated alike with refpect to the Hori$z o n$, and whofe Hearts are free from

Animal OEconomy. I37

 the Influences of all difturbing Caufes, are in Ratios compounded of the Ratios of the Lengths of the Bodies and the Ratios of the Numbers of their Pulfes in a given Time: For in this Cafe, the Magnitudes of the Quantities of Blood thrown out of the Ventricles of their Hearts in oneSyftole, are as the Capacities of correfponding Blood-Veffels, that is, $\mathrm{K} . \mathrm{k}:: \mathrm{D}^{2} \mathrm{~L} . \mathrm{d}^{2} 1$; and therefore, V.v:: LP.lp.Cor. 2. The Velocities of the Blood in the correfponding BloodVeffels of Bodies of equal Lengths, when they are fituated alike with refpect to the Horizon, and their Hearts are free from the Influences of all difturbing Caufes, will be as the Numbers of their Pulfes in a given Time, by the laft Corollary; by which, when $\mathrm{L}=1, \mathrm{~V} \cdot \mathrm{v}:: \mathrm{P} . \mathrm{p}$. The fame Proportion will obtain in

138 A Treatije of the
one and the fame Body at two different Times, if the Body at thofe Times be fituated alike with refpect to the Horizon, and its Heart be free from the Influences of all difturbing Caufes: For the fame Syftem having different Magnitudes at different Times, may be confidered as two Syftems of equal Lengths. Cor. 3. The Quantities of Blood, which in a given Time flow thro' the correfponding Blood-Veffels of Bodies fituated alike with refpect to the Horizon, when their Hearts are free from the Influences of all difturbing Caufes, are in Ratios compounded of the Ratios of the Quantities of Blood contained in their Syftems of Blood-Veffels and the Numbers of their Pulfes in a given Time. For the Quantities of Blood which flow through correfponding Veffels in a given Time, are as the Squares of the Diameters of the Vef-

Animal OEconomy. 139 fels and the Velocities of the Blood flowing through them taken together, that is, as $D^{2} V$ and $d^{2} v$: But V.v $:=\frac{\mathrm{KP}}{\mathrm{D}^{2}} \cdot \frac{\mathrm{kp}}{\mathrm{d}^{2}}$, by this Propofition: And K. $\mathrm{k}::$ Q. q, the Denfity of the Blood being given; and therefore, the Quantities of Blood which flow through correfponding Blood-Veffels in a given Time, will be as $\frac{D^{2} Q^{p}}{D^{2}}$ and $\frac{d^{2} q p}{d^{2}}$, that is, as $Q p$ and qp.

The Quantities of Blood of a tall ftrong Man and of a Child newly born, are as the Numbers 16 and I; and the Number of the Man's Palfes in a Minute in the Morning, when he is fitting, is 6ρ by the foregoing Table; and if the Number of the Child's Pulfes in a Minute be 150, as it is there put down ; the Quantities of Blood flowing through the Lungs of the Man and of the Child in a given
S_{2} Time,

Time, will be as the Numbers 104 and 15. According to Tabor, each Ventricle of the Heart of the Man can contain 1500 Grains of Blood; and confequently, when the Heart is not influenced by difturbing Caufes, will throw out ; 850000 Grains in an Hour: And each Ventricle of the Heart of the Child will throw out 843750 Grains in the fame Time. Therefore, about 835 and I20 Averdupois Pounds of Blood will pafs through the Lungs of the Man and of the Child in an Hour.

If the Quantities of Blood of ftrong well-proportioned Bodies be $\frac{1}{12}$ part of their Weights, (as they are according to Gliffon and Tabor) and if the Weights of a tall ftrong wellproportioned Man and a ftrong well-proportioned Child newly born, be 168 and $10 \frac{1}{2}$ Averdupois Pounds; the whole Quantities of their Blood will be 14 Pounds and $\frac{7}{8}$

Animal OEconomy. ifi of a Pound: And confequently, as much Blood as is contained in the Body, will flow $59^{\frac{1}{2}}$ times through the Lungs of the Man, and 137 times through the Lungs of the Child, in an Hour.

Cor. 4. If Bodies be fituated alike with refpect to the Horizon, and their Hearts be free from the Influences of all difturbing Caufes; the Quantities of Blood which flow through their Lungs or other correfponding Parts in a given Time in Proportion to the whole Quantities of Blood contained in their Bodies, will be as the Numbers of their Pulfes in a given Time: For the Quantities of Blood which flow through correfponding Blood-Veffels in a given Time, are as QP and qp , by the laft Corollary; but $\frac{Q P}{Q}$ and $\frac{q P}{q}$, are as P and p.

142 A Treatife of the

Propofition XV.

TF Bodies be fituated alike with respect to the Horizon; the Diameters of corresponding Blood-VefGels will be in the fubquintuplicate Ratios of the Squares of the Products made by the Magnitudes of the yuantities of Blood thrown out of their Hearts in one Syfole and the Numbers of their Pulfes in a given Time, that is, D. $\mathrm{d}:: \mathrm{K}^{\frac{2}{5}} \cdot \widehat{\mathrm{kp}^{\frac{2}{5}}}:$ TheVelocities in corresponding Veffels will be in the fubquintuplicate Ratios of those Products, that is, V.v :: $\overline{\mathrm{KP}^{\frac{2}{5}}} \cdot \overline{\mathrm{Kp}^{\frac{1}{5}}}$: And the Forces of their Hearts will be in Ratios compounded of the Jubquintuplicate Ratios of the Biquadrates of the fame Products and of the Simple Ratios of the Lengths of the Bodies, that is, F.f:: $\overline{\mathrm{KP}^{\frac{7}{5}}} \times \mathrm{L} \cdot \overline{\mathrm{kP}^{\frac{4}{5}} \times 1 \text {. }}$

Animal OEconomy. 143

For the Forces of the Hearts of Bodies fituated alike with reflect to the Horizon, are as the Capacities of correfponding Blood-V effels, by the Proof of the $12 t h$ Propofition, that is, $\mathrm{F} . \mathrm{f}:: \mathrm{D}^{2}$ L. $\mathrm{d}^{2} 1$: The fame Forces are in Ratios compounded of the duplicate Ratios of the $\mathrm{Ve}-$ locities and of the fimple Ratios of the Diameters and Lengths of the Bodies, by the 4 th Corollary of the 4 th Propofition, that is, F.f :: $\mathrm{V}^{2} \mathrm{D}$ L. v^{2} di: But by the 14 th Propofision, $\mathrm{V}^{2} \cdot \mathrm{v}^{2} \cdot \frac{{\overline{K P^{2}}}^{2}}{\mathrm{D}^{4}} \cdot \frac{\overline{\mathrm{KP}^{2}}}{\mathrm{~d}^{4}}$; and therefore, F. $f:: \frac{\overline{K P}^{2} \times L}{D^{3}} \cdot \frac{\overline{K p}^{2} \times 1}{d^{3}}$: And comparing this Proportion of the Forces with the firft, we Shall have D^{2} L. $\mathrm{d}^{2} 1:: \frac{\overline{K P}^{2} \times \mathrm{L}}{\mathrm{D}^{3}} \cdot \frac{\overline{\mathrm{kp}}^{2} \times 1}{\mathrm{~d}^{3}}$; whence D. $\mathrm{d}:: \overline{\mathrm{K} \mathrm{P}^{\frac{2}{5}}} \cdot \frac{\mathrm{KP}^{\frac{2}{3}}}{}$.
144. A Treatife of the

Extracting the Square Root of the laft Analogy, $\sqrt{ } \mathrm{D} . \sqrt{ } \mathrm{d}:: \overline{\mathrm{KP}^{\frac{2}{5}}}$. $\overline{k P}^{\frac{5}{5}}:$ But V.v:: $\sqrt{ } \mathrm{D} . \sqrt{ } \mathrm{d}$, by the I 2 th Propofition; and therefore, V. $\mathrm{v}:: \overline{\mathrm{KP}^{\frac{\mathrm{T}}{5}}} . \overline{\mathrm{kp}^{\frac{\mathrm{T}}{5}}}$.

And fquaring the fame Analogy, $\mathrm{D}^{2} . \mathrm{d}^{2}::{\overline{K P^{5}}}^{\frac{4}{5}} \cdot{\overline{k p^{5}}}^{\frac{4}{5}}:$ But F. f :: $\mathrm{D}^{2} \mathrm{~L}$. $d^{2} l$; and therefore, $F . f:: \overline{K P^{5}} \times L$. ${ }^{k p^{\frac{4}{5}}} \times 1$.

Cor. 1. If two Bodies of equal Lengths, or one and the fame Body at two different Times, be fituated alike with refpect to the Horizon; the Forces of the Hearts of the two Bodies, or of the Heart of the fame Body at the two Times, will be in Ratios compounded of the fubquintuplicate Ratios of the Biquadrates of the Products made by the Magnitudes of the Quantities of Blood thrown out in one Syftole and the Num-

Animal OEconomy. 145

 Numbers of Pulfes in a given Time; If $\mathrm{L}=1$; then will F . $\mathrm{f}:: \overline{\mathrm{KP}^{\frac{6}{5}} .} \overline{\mathrm{KP}^{\frac{4}{3}} \text {. }}$Cor. 2. If two Bodies of equal Lengths, or one and the fame Body at two different Times, be fituated alike with refpect to the Horizon; and if the Heart of the two Bodies, or the Heart of the fame Body at thofe Times, throw out in one Syftole Quantities of Blood whofe Magnitudes are equal, that is, if $\mathrm{L}=1$, and $\mathrm{K}=\mathrm{k}: \mathrm{Then}_{\mathrm{j}} \mathrm{D} . \mathrm{d}:: \mathrm{P}^{\frac{2}{3}}$ 。 $\mathrm{P}^{\frac{3}{3}}$, and $\mathrm{V} \cdot \mathrm{v}:: \mathrm{P}^{\frac{\pi}{3}} \cdot \mathrm{P}^{\frac{2}{3}}$, and $\mathrm{F} . \mathrm{f}:: \mathrm{P}^{\frac{4}{5}}$ 。 $p^{\frac{4}{3}}$.

Examples.

Exam. r. If from fomie Caule the Pulfe of the fame Body become twice as quick as it is in the Morning when the Body is fitting, and the Heart is free from the Influen-
$\$ 46$ A Treatife of the ces of all difturbing Caufes; and ifit become greater than under the Circumftances now mentioned, from theHeart throwing out its ufual Mag. nitude of Blood in half the Time, that is, if $\mathrm{P} . \mathrm{p}:: 2 . \mathrm{I}$; and $\mathrm{K}=\mathrm{k}$: Then, by the fecond Corollary of this Propofition, D and d will be as the Numbers 13195 and ro000, V and v as theNumbers 11487 and 10000 , and F and f as the Numbers 17411 and roooo. This feems to be pretty much the Cafe of a grown Body heated by an ardent Fever, or violent Exercije, in which the Pulfe is greater than ordinarily, and beats about twice as faft as it does in the Morning, when the Body is fitting and its Heart is free from the Influences of all difturbing Caufes; and therefore, in a Body fo heated, the Diameters of the Blood-Veffels will be increafed in the Proportion of 13195 to 10000, the Velocity of
the Blood in the Proportion of 11487 to 10000 , and the Force of the Heart in the Proportion of I74 II to 10000.
Exam. 2. If the Pule of the fame Body be quicker at one Time than at another, in the Proportion of 80 to 70 ; and if it be greater from the Heart throwing out its ufual Magnitude of Blood in a left Time, that is, if P. $\mathrm{p}:: 80.70$; and $\mathrm{K}=\mathrm{k}:$ Then, by the fecond Corollary of this Proposition, D and d will be as the Numbers 105.49 and rouen, V and v as the Numbers 10270 and 10000, and F and f as the Sumhers 11127 and 10000. The Pulfe is quicker and greater in the $A f$ ternoon, than it is in the Morning; and from many ObServations, teaking one Hour with another of thole two Times, it is quicker in grown Bodies one with another, in the Proportion of about 80 to 70: And
T2 there

148
 A Treatife of the

ful Men A and B, when fitting, at

Animal OEconomy. 149 the feveral Hours from eight a Clock in the Morning to eleven at Night. Thefe Numbers, are Means drawn from a large Number of $\mathrm{Ob}-$ fervations; thofe of A, from the Obfervations of twelve Weeks; and thofe of B, from the Obfervations of three Weeks. A eat his Breakfaft between nine and ten, B his before nine ; they both dined together at two, at which Meal B eat more plentifully than A ; and they eat little or no Supper.

From this Table it appears, that the Pulfe is flower in the Morning, than at any other Time of the Day; that it grows fomething quicker before Breakfaft, and a little more fo after it ; that it grows flower again before Dinner, and quicker immediately after Dinner; and that the Quicknefs acquired by this Meal, continues for about three or four Hours, and then abates a little; and

$$
\text { I } 50 \quad A \text { Treatije of the }
$$

continues in that State, without any confiderable Change, in Bodies which eat and drink little at Night, till they go to Reft.

Exam. 3. If from fome Caufe the Pulfe of the fame Body becomes quicker than it is in the Morning, when the Body is fitting and its Heart is free from the Influences of all difturbing Caufes, in the Proportion of 2 to I ; and if it becomes fmaller, from the Heart throwing out in each Syftole but a fourth part of the Blood which it throws out in the Morning under the Circumftances now mentioned, that is, if P . $\mathrm{p}:: 2.1$; and $\mathrm{K} . \mathrm{k}:: \mathrm{I} .4$: Then, by this Propofition and its firft Coralla$r y, D$ and d will be as the Numbers 7578 and $10000, \mathrm{~V}$ and v as the Numbers 8705 and 10000, and F and f as the Numbers 5743 and 10000. If this be nearly the Cafe of a grown Body in a malignant

Animal OEconomy. ifi

 Fever, the Cold Fit of an Ague, Conviulfions, and fome other Difeafes; then, when the Body is fitting, the Diameters of correfponding Blood-Veffels will be leffened in the Proportion of 7578 to 10000 , the Velocities in the Veffels will be leffened in the Proportion of 8705 to 10000 , and the Force of the Heart will be leffened in the Proportion of 5743 to 10000 .Now fince in the Cafes mentioned in this Example, in which the Force of the Heart is leffened, the Skin is much paler and colder than in a natural and healthful State; and is extremely pale and cold in dead Bodies, in which the Force of the Heart is wholly deftroyed: And on the contrary, fince in the Cafes mentioned in the firf Example, in which the Force of the Heart is increafed, the Skin is much redder and warmer than in a natural and
health-

I52 A Treatife of the
healthful State: We may from the Colour and Warmth of the Skin, moft certainly judge of the Force of the Heart; and at the fame time fee, how as that Force gradually leflens, the Compals of the Blood's Motion gradually contracts; till at laft, that Force wholly ceafing to act, the Motion wholly ceafes, even in the largeft V effels neareft to the Heart.

Propofition XVI.

IF the Catamenia flow through Foramina in the Sides of the BloodVeffels of the Uterus into its Cavity, if there be the fame Number of corresponding Foramina in the Sides of correfponding Blood-Veflels in all bealthful Bodies, if this Difcharge continues a given Number of Days, and during that Time of its Continus-

Animal OEconomy. I53 ance Bodies be fituated alike with reSpect to the Horizon; the Quantities of one Difcharge of grown Bodies will be in: Ratios compounded of the duplicate and fubduplicate Ratios of the Diameters of corresponding BloodVeffels, that is, putting C, c for the Quantities of one Difcharge of two grown Bodies, C. c:: $\mathrm{D}^{2} \sqrt{ } \mathrm{D} . \mathrm{d}^{2} \sqrt{ } \mathrm{~d}$.

For the whole Quantities of Blood difcharged by two healthful Bodies in a given Number of Days, will be as the Quantities difcharged by any two correfponding Foramina in that Time; and the Quantities difcharged by two correfponding Foramina, will be as the Squares of their Diameters and the Velocities wherewith the Blood flows thro' them, taken together: But the Diameters of two correfponding FO_{0} ramina are as the Diameters of two correfponding Blood-Veffels; and

I 54 A Treatife of the
the Velocities wherewith the Blood flows through the Foramina, are as the Velocities wherewith the Blood flows through thofe Veffels: And therefore, the Quantities difcharged by two correfponding Foramina, will be as the Squares of the Diameters of two correfponding BloodVeffels and theVelocities wherewith the Blood flows through them, taken together, that is, as $D^{2} \sqrt{ }$ and $\mathrm{d}^{2} \sqrt{ } \mathrm{~d}$; for by Prop. 12 . V.v::VD. $\sqrt{ } d$: And the whole Quantities of one Difcharge of two healthful Bodies fituated alike with refpect to the Horizon, which are as the Quantities difcharged by two correfponding Foramina, will be as $\mathrm{D}^{2} \sqrt{ } \mathrm{D}$ and $d^{2} \sqrt{ } d$, that is, C.c:: $D^{2} \sqrt{ } D . d^{2} \sqrt{ } d$.

Cor. r. Since this Difcharge ufually begins in thefe Countries between the Ages of 14 and 16 Years, at which Ages Bodies are not come

Animal OEconomy. Ifs

 to their full Growth; it is evident, if this Propofition be true, that this Difcharge will continually increafe from its firft Appearance till that Time; for both the Foramina grow larger, and the Velocity of the Blood increafes, while Bodies are growing; and it will likewife increafe, from fome of the Foramina being naturally fmaller than others, on which Account they will neceffarily, not all at once, but fuccelfively, become large enough to let the Blood pals through them.Cor. 2. If this Propofition be true, this Difcharge will begin fooneft and be greateft in Bodies which have the largeft Blood-Veffels: For it will begin when the Foramina are grown large enough to let the red Parts of the Blood (which are its largeft Parts) pals thro' them; but they will be fooneft large enough to do this, in Bodies which have the largeft U 2 Blood

$$
\text { Is } 6 \text { A Treatife of the }
$$

Blood-Veffels: And the Quantities of a Difcharge will be greateft, becaufe the Foramina are largeft, and the Velocity of the Blood is greateft, in fuch Bodies.

Cor. 3. The Quantities of this Difcharge in grown well-proportioned Bodies of different Lengths, and its mean Quantities in all grown Bodies of different Lengths taking thofe of each Length one with another, will, if this Propofition be true, be in Ratios compounded of the fimple and the fubquadruplicate Ratios of the Lengths of the Bodies; the Diameters of correfponding Blood-Veffels in thefe Cafes, being in the fubduplicate Ratios of thofe Lengths, by Cor. 4. Prop. I2.

Cor. 4. Hence it appears, that this Difcharge will be increafed by all Things which fivell the BloodVeffels; and on the contrary, leffened

Animal OEconomy. Ify fened by all Things which contract them : And therefore, it will be increafed by whatever increafes the Power of the Heart, and heats the Blood; and leffened by whatever leffens the Power of the Heart, and cools the Blood; for the BloodVeffels fwell or contract, as theForce of the Heart is increafed or leffened by Heat or Cold, or other Caufes.

Cor. 5. Hence it appears, that a Difcharge muft continue till the Blood-Veffels and Foramina are fo far contracted by the Lofs of Blood, that the Foramina are too fmall to let the red Parts of the Blood pals thro' them; and then it will ceafe for that Time, and not return again till the loft Blood be regained, and the Blood-Veffels and Foramina be enlarged to the Dimenfions they were of at the coming on of the preceding Difcharge; and then another
15^{8} A Treatife of the
another Difcharge will begin, continue the fame Time, and go off as that did. Thus this Difcharge happens once a Month, in which Time theloft Blood is regained ; continues in the fe Countries till about the Age of 50 ; and then wholly ceafes, from the Foramina being too fmall to let the Blood pals throw' them. And the Foramina become too fall from a Rigidity in the Blood-Veffell, which hinders them from being dilated by the Blood as ufually: For it appears both from Anatomy and common Experience, that the Blood-Veffels and other folid Parts become more rigid, as Bodies advance in Years.
 Propofition XVII.
TF Q the Quantity of Blood constained in a healthful Body before

Animal OEconomy. 159

fore a Difcharge of the Catamenia begins, and P and p the Numbers of Pulfes in a Minute a little before and after the Difcharge when the Body is fitting and its Heart is free from the Influences of all difurbing Caufes, be all known; C the Quantity of the Difcharge will be known, for it will be equal to $\mathbf{Q} \times \frac{\frac{\bar{P}^{4}-p^{4}}{P^{4}}}{P^{4}}$.

For the Heart being fuppofed to be free from the Influences of all difturbing Caufes before the Difcharge and after it, the Heat and Denfity of the Blood will both of them be the fame before and after; and therefore, if q denote the Quantity of Blood contained in the Body after the Difcharge is over, V. $\mathrm{v}:: \mathrm{Q}^{\frac{1}{4}} . \mathrm{q}^{\frac{1}{4}}$, by Cor. 3. Prop. 12 ; and V.v:: P. p, by Cor. 2. Prop. I4; and from thefe two Analogies, $Q^{\frac{1}{4}} \cdot q^{\frac{1}{4}}::$

I60 A Treatife of the
$\mathrm{P} . \mathrm{p}$; and $\mathrm{Q}-\mathrm{q} . \mathrm{Q}:: \mathrm{P}^{4}-\mathrm{p}^{4} \cdot \mathrm{P}^{4}$: But $Q-q=C$; and confequently, $C . Q:: P^{4}-\mathrm{P}^{4} \cdot \mathrm{P}^{4}$; and $\mathrm{C}=\frac{\mathrm{Q} \times \overline{\mathrm{P}^{4}-\mathrm{P}^{4}}}{\mathrm{P}^{4}}$.

For Example, If the Quantity of Blood contained in the Body at the Beginning of the Difcharge be II Averdupois Pounds, and the Pulfes in a Minute before and after the Difcharge when the Body is fitting and its Heart is perfectly free from the Influences of all difturbing Caufes be 74 and 73 ; the Quantity of the Difcharge will be above 9 Ounces: If the Quantity of Blood be in Pounds, and the Pulfes in a Minute before and after be 74 and 72 ; the Quantity of the Difcharge will be above 18 Ounces.

I have found from Obfervation, that the Pulfe is quicker before the Difcharge than after it. The Pulfe of a well-proportioned Body 64 Inches

Animal OEconomy. i6i

Inches high, in which this Difcharge was very fmall, was obferved at every Hour of the Day for 8 Months together; and the Pulfe of another Body fix Inches fhorter, in which this Difcharge was very great, was obferved at every Hour of the Day for a Month ; and the mean Numbers of Pulfes in a Minute, taken from all the Obfervations made on the two Bodies in the Week before and Week after the Difcharge, were 74 and 72 in the taller Body, and $79^{\frac{1}{2}}$ and 75 in the thorter. The Differences of thefe Numbers before and after the Difcharge, are too great for the Quantity of the Difcharge in thefe Climates; which I believe does not ordinarily exceed I_{2} Ounces in tall and well-proportioned Bodies. And if from more Obfervations of the Pulfe of perfectly healthful Bodies which have this Difcharge in due Quantities it X fhal!

162 A Treative of the
flall be found, that the Differences of its Numbers before and after the Difcharge make it greater than it really is in thefe Climates; then the Quantity of a Difcharge cannot be determined by this Propofition, which fuppofes the Heart before and after the Difcharge to be free from the Influences of all difturbing Caufes : But it may be determined by the next Propofition, when from Experiments and Obfervations all the Terms ufed in it hall be known.

00900000000000000909

Propofition XVIII.

F Q the Quantity of Blood contained in the Body at the Beginning of a Dijcharge of the Catamenia, P and p the Numbers of Pulles in a Minute when the Body is fitting, K and k the Magnitudes of the Quantities of Blood thrown out of the Heart

Animal OEconomy. 163

 in one Syftole, and \triangle and o the Denfities of the Blood, before and after the Difcharge, be all known; the Quantity of a Difcharge will be known,

For the Capacities of one and the fame Blood-Veffel before and after the Difcharge, are as the Squares of its Diameters; which Squares when the Body is fitting are as $\overline{\mathrm{KP}^{\frac{4}{5}}}$ and $\overline{\mathrm{kp}}^{\frac{4}{5}}$ by the s 故 Propofition: And the Quantities of Blood contained in one and the fame Blood-Veffel at thofe Times are as the Squares of its Diameters and the Denfities of the Blood taken together: But the Quantities of Blood contained in the whole Body, are as the Quantities of Blood contained in one and the fame Blood-Veffel when the

$$
X 2 \quad \text { Body }
$$

164 A Treatife of the
Body is fitting: And therefore, the Quantities of Blood contained in the whole Body before and after the Difcharge, are as $\overline{K^{\frac{2}{5}}} \times \Delta$ and $\overline{k p}^{-\frac{4}{5}} \times \delta$, that is $\mathrm{Q} \cdot \mathrm{q}::{\overline{K P^{5}}}^{\frac{4}{5}} \times \Delta \cdot \overline{\mathrm{kp}}^{\frac{4}{5}} \times \delta$; whence $\mathrm{Q}-\mathrm{q}=\mathrm{C}=\mathrm{Q} \times \frac{\overline{\mathrm{KP}^{\frac{4}{5}} \times \Delta-\sqrt{\mathrm{KP}^{\frac{4}{7}} \times 8}}}{\overline{\mathrm{KP}^{\frac{4}{5}} x \Delta}}$.

Cor. r. If the Degrees of Heat in the Blood, and confequently its Denfities, before and after the Difcharge, be equal ; and if the Magnitudes of the Quantities thrown out in one Syftole before and after be likewife equal, that is, if $\Delta=\rho$, and $K=k$; then will $C=Q \times \frac{\overline{P^{\frac{4}{5}}-p^{\frac{4}{5}}}}{P^{\frac{4}{5}}}$.

For Example, If the Quantity of Blood contained in the Body when the Difcharge begins be in Pounds, and the Numbers of Pulfes in a Mi-

Animal OEconomy. i6s

 nute before and after the Difcharge when the Body is fitting be 74 and 70 ; the Quantity of the Difcharge will be above $7_{\frac{1}{2}}$ Ounces; and near 9 Ounces, if the Quantity of Blood in the Body when the Difcharge begins be 12 Pounds. It is to be obferved, that the Degrees of Heat in the Blood before and after the Difcharge, may be known by a Thermometer truly adjufted: And by the Fulnefs of the Pulfe we may judge of the Magnitudes of the Quantities of Blood thrown out in one Syltole: And therefore, from Experiments and Obfervations carefully made by Perfons who have an Opportunity of doing it, the Quantity of a Difcharge may be nearly known by this Propofition.166 A Treatife of the

造

Propofition XIX. Problem II.

MHE Blood-Veffels of a particular Part of the Body being obfructed or opened, contracted or dilated; to determine the Changes made in the Velocities of the Blood and Marnitudes of the Blood-Veffels of all the other Parts.

Cafe I. If the Arterial Trunk of a Part be obftructed or contracted, fo as either wholly or in fome Degree to hinder the Blood from flowing through that Part ; the Velocity will be increafed in all the other Parts, and its Increafe will be greater or lefs, ceteris paribus, as the Arterial Trunks of thofe Parts are nearer to or farther from the Trunk which is obftructed or contracted, by Cor. Prop. 7.

The

ANimal OECONOMY. 167

The Blood-Veffels of the Part whofe Artery is obftructed or contracted will contract and grow lefs, from a Deftruction or Diminution of the Force of the Blood's Motion which before the Obftruction or Contraction of the Trunk kept thofe Veffels diftended: And the Blood-Veffels of all the other Parts will fwell and grow larger, by the Force of the augmented Motion of the Blood; and their Swelling and Enlargement will be greater or lefs, cateris paribus, as they are nearer to or farther from the obftructed or contracted Trunk. Like Changes will be made in the Velocities of the Blood and Magnitudes of the Blood-Veffels of all the other Parts, if, inftead of the Arterial Trunk of a Part, any of the Branches of that Part (whether Arteries or Veins) be obftructed or contracted; becaufe fuch Obftruction or Contraction will

168 A Treatife of the
leffen the Velocity in the Arterial Trunk, by Cor. 2. Prop. 5 ; and by Confequence, will produce like Changes in the Velocities and Magnitudes of the Veffels of the other Parts, as would be produced by a real Contraction of that Trunk.

Cafe II. If the Arterial Trunk of a Part be opened or dilated, the Blood will flow fatter into that Trunk and flower through all the other Parts of the Body than it did before ; and the Diminution of Velocity in the other Parts will be greater or lefs, coteris paribus, as they are nearer to or farther from the Trunk which is opened or dilated, by Cor. Prop. 7.

If the Trunk be opened, and the greateft part of the Blood which flows into it flow out of the Orifice; the Veffels of that Part will contract and grow lefs, from the Blood

Animal OEconomy. 169

 Blood running out of them, and their not receiving their ufual Supply to keep them diftended. And the Veffels of all the other Parts will likewife be contracted, from a Diminution of the Velocity of the Blood in them ; and their Contraction will be greater or lefs, cateris paribus, as they are nearer to or farther from the Trunk which is opened; and they will undergo like Changes of Magnitude, when the Arterial Trunk is only dilated; tho' the Veffels of the Part fupply'd by the dilated Trunk will all fwell and grow larger, contrary to what happened to them when the Trunk was opened. LikeChanges will be made in theVelocities andMagnitudes of theV effels of other Parts, when inftead of the Arterial Trunk, one or more of the Branches (whether Veins or Arteries) of a Part are opened or dilated. For a Dilatation or Opening.170 A Treatije of the
of any of the Branches will increafe the Velocity in the Arterial Trunk, by Cor. 1. Prop. 5 ; and by Confequence, will produce like Changes in the Velocities and Magnitudes of the Veffels of the other Parts as would be produced by a real Dilatation or Opening of the Arterial Trunk.

Cafe 3. If the Venal Trunk of a Part be obftructed or contracted, the Blood will thereby be either totally or in fome meafure hindered from flowing out of the Part; on which Account, its Veffels will fwell from the Blood flowing fafter into than it flows out of them for fome little Time till they can be no farther diftended: After that, if lefs Blood flow into the Arterial Trunk of the Part than did before; like Changes of Velocity and Magnitude will be produced in the BloodVeffels

Animal OEconomy. iyi Veffels of all the other Parts, as were produced in them by the Obftruction or Contraction of the Ar-terial Trunk by the firft Cafe.

Cafe 4. If the Venal Trunk of a Part be opened or dilated, the Blood will flow fafter thro' the Part than it did before; becaufe the Aperture or Dilatation either takes off or leffens the Refiftance arifing from the Blood which lies before it: The Velocity therefore will be increafed in the Arterial Trunk, and it will be leffened in the Veffels of all the other Parts; and its Diminution in thofe Veffels, and the Contraction of their Magnitudes confequent thereon, will be greater or lefs, cateris paribus, as the Veffels are nearer to or farther from the Part whofe Vein is opened or dilated, by the fecondCafe. The Veffels of the Part whofe Venal Trunk is opened will

172 A Treatife of the
contract, notwithftanding the $\mathrm{Ve}-$ locity of the Blood in them is increafed: For by the A perture, the Reffifance given by the Blood lying beyond it to the Motion of the Blood through the Part, will be taken off; and by Confequence, the Velocity of the Blood flowing through the Part will be increafed: But this Increafe of Velocity beginning in the Vein at the Place of Aperture, and thence fucceffively running thro' the Venal and Arterial Branches, and at laft ending in the Arterial Trunk, it is evident, that more Blood will in a given Time flow out of each of thefe Veffels, than flows in; and by Confequence, all thefe Veffels will be contracted; and the Contraction will firft begin, where the Increafe of Velocity firt began, and fucceffively go thro' the Veffels in the fame Manner as that did.

Cor.

Animal OEconomy. 173

Cor. I. Hence it appears, that if a Part be overloaded with Blood, it will be fooneft emptied by opening the Veffels of the Part it felf; and next, by opening the Veffels of the Parts which are neareft to it.

Cor. 2. If the Blood flow too faft into fome one Part, from an Aperture or Dilatation of fome of its Blood-Veffels; the preternatural Influx of Blood into this Part will be leffened by increafing the Motion of the Blood thro' the other Parts.

Cor. 3. If the Blood flow too flow into fome one Part, from an Obftruction or Contraction of fome of its Blood-Veffels ; the Motion through this Part will be increaled by contracting the Veffels and leffening the Motion thro' the other Parts.
N. B.

174 A'Treatife of the
N. B. There may perhaps be fome little Difturbances given to thefe Laws of Apertures and Obftructions, Dilatations and Contractions of the Blood-Veffels, from feveral Inofculations of Arteries with Arteries, and Veins with Veins; but as thefe Difturbances cannot be accurately determined, fo neither can they be confiderable; as appears from the Succels of Practice grounded on thefe Laws.

Propofition XX. Problem III.
$\square \mathrm{O}$ determine the Cbanges made in the Velocities of the Blood and Magnitudes of the Blood-Veffels in different Parts of the Body, when it is fituated differently with respect to the Horizon.

The

Animal OEconomy. 175
The correfponding Arteries and Veins are every where contiguous; and the Veins are larger than their correfponding Arteries, and confequently, contain a greater Quantity of Blood: On which Accounts, when the Force of Gravity in a Vein confpires with or oppofes the Motion of the Blood through it, that Motion will be more increafed or leffened by the Force of Gravity in the Vein, than it is leffened or increafed by the fame Force in the correfponding Artery; and more or lefs Blood will by Virtue of this Force flow through the Vein, than will flow through the Artery in the fame Time; and therefore, if the Vein and Artery be the two Trunks of a Part; more or lefs Blood will flow out of the Part than flows in, and the Blood-Veffells of the Part will be contracted or dilated. For Inftance, in the Day when the Bo-

196 A Treatife of the
dy is erect, Gravity confpires with the Motion of the Blood from the Head, and oppofes its Motion from the Legs; and in the Night, when the Body is horizontal, Gravity neither confpires with nor oppofes the Motion from thefeParts : And hence the Head will contain lefs, and the Legs more Blood, in the Day than in the Night.

Propofition XXI. Problem IV.
> $\square \mathrm{O}$ determine the Influence and Power of the Soul over the Motion of the Heart.

That the Soul has a very great Power over the Heart appears from the following Inftances. A dying Man who had had little or no Pulfe, and had been in cold clammy Sweats for feveral Hours, was by

Animal OEconomy. 17y

 an Accident exceedingly alarmed, and thrown into the greatef Difturbance of Mind; upon which his Heart and Blood gradually recovered their Motions to a confiderable Degree, and kept them above an Hour, till his Mind grew calm and eafy; and then they loft them again, and he died in lefs than half an Hour. A ftrong Extenfion of the Legs and Arms by the Power of the Will, has quickened the Pulfe 20 Beats in a Minute, and at the fame Time made it fo low, that it could fcarcely be felt. The Pulfes in a Minute of a Man lying, fitting, ftanding, walking at the Rate of two Miles in an Hour, at the Rate of four Miles in an Hour, and running as faft as he could, were 64, $68,78,100,140$, and I 50 or more. When a Body ftands up, the Pulfe begins to grow quicker the very Inftant the Body begins to rife, or Z the158 A Treatife of the
the Soul begins to exercife the Power which railes it; and when a Body moves, it grows ftill quicker ; and the Soul exercifes more Force to move the Body, in Proportion to the Quicknels of the Motion: When a Body firft ftands up and begins to move, the Pulfe is fmaller than it was before; but grows greater by Degrees, as the Body grows warm by the Motion. A Fit of Laughing has quickened the Pulfe 25 Beats in a Minute: And breathing voluntarily three or four Times fafter than ufually, has quickened it I3 or 14 Beats: The Pulfe is quickened by coughing, fwallowing, reading loud, or by any Motion that is performed by the Power of the Soul. From hence it appears, that the Motion of the Heart is changed mediately or immediately, by every Change made in the Affections, Activity or Power of the Soul.

Animal OEconomy. 179

Of Refpiration.

Propofition XXII.

IF a Wind blow uniformly, and a beated Body be placed in it to cool; the Time of its cooling will be greater or lefs, as the Quantity of Matter in the Body, or its Degree of Heat at the Time of its being firt placed in the Wind, or the Degree of Heat in the Wind, is greater or lefs; or as the Surface of the Body is le/s or greater.

For if the Degree of Heat in the Body at the Time of its being firft placed in the Wind, and the Degree of Heat in the Wind, be both given ; the Time of its cooling will be as the Quantity of Heat in the Body in Proportion to the Meafure Z 2
accord-

180 A Treatife of the
according to which it is cooled: But the Degree of Heat in the Body being given, its Quantity of Heat will be as its Quantity of Matter; and the Surface of the Body is the Meafure according to which it is cooled: And therefore, the Time of cooling will be as the Quantity of Matter in the Body in Proportion to its Surface; and by Confequence, will be greater or lefs, as the Quantity of Matter is greater or lefs, or as the Surface is lefs or greater: If the Body, and Degree of Heat in the Wind, be buth given; the Time of its cooling will be greater or lefs, as the Degree of Heat in the Body when firft placed in the Wind is greater or lefs. From what Sir Ifaac Newton has proved in his Scale of the Degrees of Heat, it is evident, that the Time of the Body's cooling will not be proportional to its Heat when firf placed in the Wind:

Animal OEconomy. 18 it

 For if one and the fame Body has different Degrees of Heat, the Times of its cooling will be in Arithmetick Proportion, when the Degrees of Heat are in Geometrick Progreffion; whence the Time of cooling in Proportion to the Heat, will for the moft part be greater when the Heat is lefs; and therefore, the Time of cooling will not be proportional to the Degree of Heat in the Body when firft placed in the Wind: And yet notwithftanding this, it will ever be greater when the Heat is greater, and lefs when it is lefs; which is all that is affirmed in the Propofition. If the Body, and its Degree of Heat when firft placed in the Wind, be both given; the Time of cooling will be greater or lefs, as the Wind is warmer or colder, that is, as the Degree of Heat in the Wind is lefs or greater : And therefore, the Propofition is true.182 A Treatife of the
Cor. I. If a Body of a given Figure be heated to a given Degree, and then placed in a Wind blowing uniformly, and the Degree of Heat in the Wind be given; the Time of its cooling, will be as a given Side and the Denfity of the Body taken together, as is evident from the Proot of this Propofition. If the Body be a Cube, the Time of its cooling will be as the Side and Denfity of the Cube; and if a Globe, as the Diameter and Denfity of the Globe; taken together.

Cor. 2. If a homogeneal Body of a given Figure be heated to a given Degree, and then placed in a Wind blowing uniformly whole Heat is given; the Time of its cooling will be as a given Side of the Body. If the Body be a Cube, the Time of its cooling will be as the Side of the Cube; and if a Globe, as its Diameter.

Pro

Animal OEconomy. 183

00000009060000000000

Propofition XXIII.

TF a Wind blow uniformly, and a heated Body be placed in it to cool; the Heat which the Body when first placed in the Wind will communicate to the Air, and consequently lore, in a very Short given Time, will be as the Heat and Surface of the Body taken together directly, and the Heat of the Air invert $/ l y$. If S denote the Surface of the Body, H its Degree of Heat when placed in the Wind, and h the Heat that is communicated to the Air and loft in the Body in a very floor given Time; I fay, that h will be as $\frac{\mathrm{SH}}{\mathrm{A}}$.

For the Wind blowing uniformly, the Air heated by the Body will be always carried off by the Wind, and

184 A Treatife of the
and other Air fucceed into its Place with an uniform Motion; by which Means, equal Parts of Air will be heated by the heated Body in equal Times, and conceive a Heat proportional to the Heat of the Body; and confequently, one and the fame heatedBody, placed in aWind blowing uniformly whofe Degree of Heat is given, will when firft placed in the Wind communicate to the Air, and confequently lofe, in a fhort given Time, a Heat which is proportional to the Heat of the Body: If the Body be different, but its Degree of Heat, and the Degree of Heat in the Wind, be both given ; the Body will communicate to the Air, and confequently lofe, in a verý fhort given Time, a Heat which is proportional to the Surface of the Body: And if both the Body, and its Degree of Heat be different, it will communicate to the Air , and confequent-

Animal OEconomy. 185 ly lofe, in a very fhort given Time, a Heat which is proportional to the Coldnefs of the Wind ; which Coldnefs is inverfly as its Degree of Heat: And therefore, the Heat communicated to the Air, and loft by a Body heated and placed in a Wind blowing uniformly, will be as the Heat and Surface of the Body taken together directly; and the Heat of the Wind inverfly, that is, h will be as $\frac{\mathrm{SH}}{\mathrm{A}}$.

Cor. I. If the Heat of the Wind be given; the Heat which is communicated to the Air, and loft in the Body, in a given Time, will be as the Surface of the Body, and its Degree of Heat when firft expofed to the Wind, taken together. If A be given, h will be as SH.

Cor. 2. If the Degree of Heat in the Body, when firt expofed to the A. a

Wind,

186 A Treatije of the
Wind, be given ; the Heat communicated to the Air, and loft in the Body, in a given Time, will be as the Surface of theBody directly; and the Degree of Heat in the Wind invernly. If H be given, h will be as $\frac{S}{A}$.

Cor. 3. If the Surface of the Body be given; the Heat which is communicated to the Air, and loft in the Body, in a given Time, will be as the Heat of the Body, when firft expofed to the Wind, directly; and as the Heat of the Wind inverfly. If S be given, h will be as $\frac{H}{A}$.

Cor. 4. If the Degree of Heat in one and the fame Body, when firft expofed to the Wind, be given; the Heat which it will communicate to the Air, and confequently lofe, in a very hort given Time, will be inverlly

Animal OE conomy. 187 inverfly as the Heat; or directly as the Coldnefs of the Wind. If S and H be given, h will be as $\frac{1}{A}$.

运

Propofition XXIV.

$\rightarrow \mathrm{HE}$ Life of Animals is prefer. ved by acid Parts of the Air, mixing with the Blood in the Lungs: Which Parts diffolve or attenuate the Blood, and preferve its Heat; and by both thefe, keep up the Motion of the Heart.

I thall prove the Truth of this Propolition, from a Series of Experiments and Obfervations.

Firf then, Animals die, when they are deprived of Air by Itopping the Wind-Pipe, or putting them in an Air Pump and drawing

$$
A \text { a } 2
$$

out

188 A Treatife of the out the Air. And they likewife die foon, in a fmall Quantity of Air fo clofely confined, as to have no Communication with the reft of the Atmofphere: Small Birds cannot live above three or four Hours in a Quart of fuch Air; and a Gallon of Air included in a Bladder, and by a Pipe reciprocally infpired and expired by the Lungs of a Man, will become unfit to preferve Life, in little more than one Minute of Time.

Hence it appears, that Air is neceflary to preferve the Life of Animals: And likewife, that a conftant Supply of frefh Air is neceffary to that End.

Secondly, A Candle goes out, glowing Coals and red-hot Iron ceafe to thine, and Animals die, in the Air-Pump on drawing out the Air. A Candle goes out, glowing

Coals

Animal OEconomy. $\quad 189$

 Coals and red-hot Iron ceafe to Thine, and Animals die, in a fmall Quantity of Air fo clofely confined, as to have no Communication with the reft of the Atmofphere. Animals die in Air rendered effete by burning Coals or Candles in it till they are extinguifhed, and glowing Coals or Candles are extinguilhed in Air rendered effete by Animals breathing in it till they die. Hook found, that if Air rendered effete be blown on live Coals, it produces no other Effect, than to blow off the Afhes and put out the Fire ; and that the more you blow, the more dead is the Light, and the fooner is the Fire quite extinct ; infomuch that in a very little Time, the Coals become perfectly black without emitting the leaft Glimpfe of Light or Shining: At which Time, if one Blaft of frefh Air be blown upon thofe feemingly dead, extinct, and blackblack Coals, they all begin to glow, burn, and thine afrefh, as if they had not been at all extinct; and the more frefh Air is blown upon them, the more they thine, and the fooner are they burnt out and confumed: And Animals put into fuch effete Air foon die, tho for fome Time they breath, and move their Lungs as before. The Medium found in Damps, is prefent Death to thofe who breath it; and in an Inftant, extinguifhes the brighteft Flame, the Shining of glowing Coals, or red-hot Iron, when put into it. Common Air, by paffing thro' redhot Brafs, red-hot Iron, red-hot Charcoal, or the Flame of Spirit of Wine, becomes unfit to preferve Life, and the Shining of Fire and Flame.

Hence it appears, that frelh Air preferves Life in Animals by the very fame Power, or by the Operation

Animal OEConomy. Igi ration of the very fame Parts, whereby it preferves Fire and Flame in fulphureous and unctuous Subftan- . ces, when once they are kindled.

Thirdly, If two Parts of compound Spirit of Nitre be poured on one Part of Oil of Cloves or Caraway Seeds, or of any ponderous Oil of Vegetable or Animal Subftances, or Oil of Turpentine thickened with a little Balfam of Sulphur ; the Liquors grow fo very hot in mixing, as prefently to fend up a burning Flame: If a Drachm of the fame compound Spirit be poured upon half a Drachm of Oil of $\mathrm{Ca}-$ raway Seeds, even invacuo, the Mixture immediately makes a Flafh like Gunpowder : And well-rectified Spirit of Wine poured on the fame compound Spirit flafhes. Common Sulphur and Nitre powdered, mixed together, and kindled, will continue

A Treative of the
tinue to burn under Water, or in vacuo, as well as in the open Air.

Now fince Air is neceffary to preferve common Fire and Flame in fulphureous and unctuous Subftances, when once they are kindled; and it appears by thefe Experiments, that Fire and Flame may both be produced and preferved in fulphureous and unctuous Subftances, by acid Particles even without Air; it follows, that Air preferves Fire and Flame by means of acid Particles: And fince it preferves the Life of Animals, by the Operation of the very fame Particles whereby it preferves Fire and Flame ; it likewife follows, that it preferves the Life of Animals by its acid Particles.

Fourthly, The Venal Blood is of a deep purple Colour and the Arterial Blood of a bright red, in all Parts of the Body except the Lungs;

Animal OEconomy. 193

 and in them the Blood is of a dark purple Colour in the Pulmonary Artery, and of a bright red in the Pulmonary Vein. Hence it follows, that the Blood changes its deep purple Colour into a bright red, in the communicant Branches of the Pulmonary Artery and Vein which are fpread on the Veficles; and that it changes its bright red into a deep purple Colour, in the communicant Branches of the Arteries and Veins of other Parts. If Blood be drawn out of a Vein, its upper Surface, which is contiguous to the Air, will acquire the fame bright red Colour which the Blood acquires in the Lungs ; and if this red Surface be cut off with a fharpKnife, the blackifh Surface of the remaining Blood, being now touched and acted upon by the Air in the fame Manner as the firt, will acquire the fame $\mathrm{Co}-$ lour as that did; and the fame B bChange

194 A Treatije of the
Change of Colour will be made in the Bottom of the Cake, if it be turned upwards in the Cup, and expofed to the Air; and if Blood juft drawn be ftirred and agitated, till the Air be intimately mixed with it throughout, its whole Subftance will foon acquire the bright red Colour of Arterial Blood. If the WindPipe be ftopped with a Cork, and fome Time after the Operation (when the Air which is thut up in the Lungs is made effete, that is, deprived of its acid Parts) Blood be drawn from the Cervical Artery, it will have the fame dark purple Colour as Venal Blood.

Now fince from thefe Experiments; the Air muft touch Venal Blood drawn out of the Body to change its deep purple Colour into a bright red, and the acid Parts of the Air caufe the fame Change of Colour in the Blood in

Animal OEconomy. 195

 the Lungs ; it will follow, that there muft be a like Contact of thefe acid Parts with the Blood in the Lungs. And fince I have fhewn, that Air preferves the Life of Animals by its acid Parts; it will likewife follow, that the Life of Animals is preferved by acid Parts of the Air mixing with the Blood in the Lungs.Fiftbly, The bright red Colour acquired by the Blood in the Lungs, from its Purity and Intenfenefs, is the Red of the fecond Order of Colours in the Table of Sir Ifaac Nerwton's Opticks, p. 206: But the blackifh or deep purple Colour of Venal Blood turns into this bright Red, without paffing through the Colours of Blue, Green, Yellow, and Orange; and therefore, mult arife from the Indigo and Purple of the third Order, and not from the Indigo and Violet of the fecond: And B b 2 con-
rgb A Treatife of the
confequently by that Table, the tinging Corpufcles of the Blood are leffened in the Lungs.

Hence it appears, that the acid Parts of the Air diffolve or attenuate the Blood in the Lungs.

Oil of Vitriol and Water poured fucceffively into the fame Veffel, grow very hot in the mixing. Aqua fortis, or Spirit of Vitriol, poured upon Filings of Iron, diffolves the Filings with a great Heat and Ebullition. And the Acid of the Air conftantly apply'd to fulphureous and unctuous Subftances, when once they are kindled, continues to diffolve them with the Heat of Fire and Flame.

From thefe Experiments we learn, that it is the Nature of Acids to diffolve Bodies with Heat ; and therefore, fince I have fhewn that the Acid of the Air diffolves the Blood; it muft be allowed, that it warms

Animal OEconomy. 197

 the Blood at the fame time it diffolves it.When Animals are deprived of the Acid of the Air, the Pulfe in lefs than one Minute of Time becomes fmall and quick; as may be obferved in a Dog, when his Lungs are made flaccid and without Motion by laying open his Thorax. Upon emptying my Lungs of Air as much as I could, and then ftopping myBreath; my Pulfe has grown fmall and quick, with a kind of trembling convulfive Motion, in lefs than half a Minute of Time. And Thrufton obferved the Pulfe to grow fmaller on an Intermiffion of Refpiration, and greater again on repeating it.

Hence it appears, that the Motion of the Heart leffens immediately on Animals being deprived of the Acid of the Air; and confequently, that this Acid by diffolving

198 .. A Treatife of the
ing or attenuating the Blood and preferving its Heat, keeps up the Motion of the Heart.

Therefore the Propofition is true.
But tho' this Propofition be fully proved; yet to obviate Objections, I think it not improper to prove the following Particulars by Experiments and Obfervations.

1. The Motion of the Lungs in breathing is no otherwife neceffary to the Life of Animals, than as by this Motion the Lungs receive a conftant Supply of frefh Air.

This is proved by the following Experiment. Hook, after he had laid open the Thorax of a Dog, cut away his Ribs and Diaphragm, and taken off the Pericardium, kept him alive before the Royal Society of London above an Hour, by blowing frefh Air into his Lungs with a

Animal OEconomy. 199 pair of Bellows. It was obferved, that as often as he left off blowing, and fuffered the Lungs to fubfide and lie ftill, the Dog prefently fell into dying convulfive Motions, and foon recovered again on renewing the Blaft. After he had done this feveral Times with like Succefs, he pricked all the outer Coat of the Lungs with the flender Point of a fharp Penknife, and by a conftant Blaft made with a double pair of Bellows, he kept the Lungs always diftended and without Motion ; and it was obferved, that while the Lungs were thus kept diftended with a conftant Supply of frefh Air, the Dog lay ftill, his Eyes were quick, and his Heart beat regularly; but that upon leaving off blowing, and fuffering the Lungs to fubfide and lie ftill, the Dog prefently fell into dying convulfive Motions, and as foon recovered again on renewing the

200 A Treatife of the
Blaft, and fupplying the Lungs with frefh Air.
2. The Motion of the Lungs in breathing does not change the Co lour of the Blood in that Part.

This is proved by the following Experiment. Lower opened the Pulmonary Vein of a Dog near the left Auricle of the Heart, when his Lungs were kept diftended and without Motion by a conftant Supply of frefh Air; and obferved the Blood drawn to have the fame florid Colour, as the Arterial Blood of other Parts.

Farther, If the Motion of the Lungs change the Colour of the Blood from a dark Purple to a bright Red ; I fee no Reafon, why the Motion of the Mufcles when continued for fome Time fhould not keep up that red Colour in the Veins; and confequently, why under ftrong Exercife Venal Blood (contrary to
Expe-

Animal OEconomy. $20 i$

 Experience)fhould not be of a bright red Colour. For a ftrong and vigorous Motion of the Mufcles mult undoubtedly contribute as much to preferve the bright red Colour of Arterial Blood, as the Motion of the Lungs contributes to produce it. 3. The Death of Animals and Extinction of Flame in a confined Air, are not caufed by a Diminution of its Elafticity.For there is fometimes as great a Diminution of Elafticity in the Air in violent Storms of Wind and Hurricanes, as there is in a fmall Cuantity of confined Air at the Time when Animals die and Candles go out in it; and yet no fuch Effects follow. Farther, If Animals die and Candles go out in a confined Air, from a Diminution of its Elaflicity ; then thefe Effects would not be produced in different Quantities of confined Air, until its Elafticity C c was

202 A Treative of the
was equally diminifhed in them: But it has been found by Experiments, that at the Time when Animals die and Candles go out in two different Quantities of confined Air, there is a greater Diminution of Elafticity in the fmaller Quantity than in the greater: And therefore, Life and Flame are not deftroyed by a Diminution of the Elafticity of the Air. This is farther confirmed from an Experiment mentioned above; For if effete Air, however forcibly blown on live Coals, extinguifhes them in like Manner as it does when in a State of Reft; then the fame effete Air, which in a quiefcent State cannot preferve Life, will not be able to do it when it is preffed into the Lungs with any Force, even a greater than is fufficient to fwell the AirVeffels to their ufual Magnitudes: And therefore Animals do not die

Animal OEconomy. 203

 in a confined Air, from the Veficule not being fufficiently dilated on account of a Diminution of the Elafticity of the Air. A Diminution of the Elafticity of the Air is no otherwife hurtful, than as it hinders the Veficles from being fufficiently dilated, and thereby hinders the Blood from receiving its ufual Quantity of Acid in a given Time: Whence the Blood will not be fufficiently iffolved and warmed in the Lungs; which will make Refpiration quick and uneafy, but cannot cafe fudden Death.
gocopcocegotioncorcoscong

Propofition XXV.

FF healthful Bodies be cloathed alike, and placed in a Wind blowing uniformly, or move gently along in a calm and fill Air with the fame uniform Motion; and if Heat be ge-

$$
\text { CC } 2 \text { nerated }
$$

204 A Treatise of the
nerated in their Blood by the Acid of the Air, as fat as it is loft by being communicated to the Air in their Lungs and at their Skins: The Heats generated in their Blood in a Short given Time, will be as the Sums of the internal Surfaces of their Systems of Air-Veffeis and external Surfaces of their. Bodies, and the Degrees of Heat in their Blood, taken together directly; and as the Degrees of Heat in the Wind or calm Air invert $l y$. If S , s denote the Sums of the said Surfaces of two healthful Bodies; H, h the Degrees of Heat in their Blood when they are first placed in the Wind, or begin to move in a calm and Bill Air; A, a the Degrees of Heat in the Wind or Air ; and G, g the Heats generated in their Blood by the Acid of the Air in a Short given Time: I fay, that GIg:: $\frac{\mathrm{SH}}{\mathrm{A}} \cdot \frac{\mathrm{sh}}{\mathrm{a}}$.

Animal OEconomy. 205

For fince the Bodies are fuppofed to be cloathed alike, the external Surfaces of their Bodies will be alike expofed to the Air; and the internal Surfaces of their Syftems of Air-Veffels are always alike expofed to it, on account of Refpiration; and fince it is the fame thing to move gently along in a calm and ftill Air with an uniform Motion, as to ftand ftill in a Wind blowing with the fame uniform Motion: It is evident by the ${ }_{2} 3 \mathrm{~d}$ Propofition, that the Heats communicated to the Air and loft in the Blood of healthful Bodies in a very fhort given Time, will be as the Sums of the internal Surfaces of their Syftems of AirVeffels and external Surfaces of their Bodies, and the Degrees of Heat in their Blood, taken together directly; and the Degrees of Heat in the Wind or Air inverlly: But by Suppofition, the Heat is generated by

206 A Treatife of the
the Acid of the Air as faft as it is loft by being communicated to the Air in the Lungs and at the Skin: And therefore, the Heats generated by the Acid of the Air in the Blood of healthful Bodies in a Chort given Time, will be as the Sums of the internal Surfaces of their Syftems of Air-Veffels and external Surfaces of their Bodies, and the Degrees of Heat in their Blood, taken together, directly; and the Degrees of Heat in the Wind or Air, invernly; that is, G.g:: $\frac{\text { SH }}{\mathrm{A}}$. $\frac{\text { sh }}{\mathrm{a}}$.

Cor. I. If the Degrees of Heat in the Blood of Bodies under the Circumftances fuppofed in this Propofition, and the Degrees of Heat in the Wind or calm Air be refpectively equal; the Heats generated in the Blood by the Acid of the Air in a given Time, will be as the Sums

Animal OEconomy. 207

 of the internal Surfaces of the Syftems of Air-Veffels and external Surfaces of the Bodies. If $\mathrm{H}=\mathrm{h}$, and $A=a$; then will G. $g:: S . s$.From fome Experiments made with a Thermometer at the fame Time and in the fame Place, I have found the Heats of the warmeft Parts of the Skin, and confequently the Heats of the Blood, to be nearly equal in healthful Bodies of all Ages, notwithftanding the Limbs of old Bodies are confiderably colder than the Limbs of young Bodies, or Bodies of a middle Age: And if by a larger Experience, this thall be found to be univerfally true; then will this Corollary obtain in all healthful Bodies in the fame Place and at the fame Time: And as thefe Experiments were made when the Bodies were at Reft, and the Air ftill and calm, fo this Corollary will likewife obtain

208 A Treatife of the
obtain nearly in Bodies at Reft in a calm and ftill Air, in the fame Place and at the fame Time: And granting this, and fuppofing the external Surfaces of the Bodies to be proportional to the whole internal Surfaces of their Syftems of Air-Veffels, and thofe whole Surfaces to be proportional to the internal Surfaces of all their Veficles thro' which the Acid of the Air paffes into their Blood; then will the Heats generated in a fhort given Time in the Blood of healthful Bodies, in the fame Place and at the fame Time, be as the internal Surfaces of all the Veficles of their refpective Syftems of Air-Veffels: And if the Veficles attract the acid Parts of the Air, in Proportion to the Magnitudes of their internal Surfaces, (as I have fhewn the Blood-Veffels to act on the Blood by attractive or fome other Powers, in Proportion to the
Mag-

Animal OEConomy. 209

 Magnitudes of their internal Surfaces) then will the Heats generated in the Blood by the Acid of the Air in a fhort given Time, be as the attractive Powers of all the Veficles.Cor. 2. If the Degrees of Heat in the Blood of Bodies under the Circumftances fuppofed in this Propofition be equal; the Heats generated in it by the Acid of the Air in a Mort given Time, will be as the Sums of the internal Surfaces of the Syftems of Air-Veffels and external Surfaces of the Bodies, directly; and the Degrees of Heat in the Wind or calm Air, inverfly: If $\mathrm{H}=\mathrm{h}$, then will G. $g:: \frac{S}{A} \cdot \frac{s}{a}$.

If by the Thermometer it fhall be found, that the Degree of Heat in the Blood of healthful Bodies is much the fame at all Seafons of the
Dd Year,

210 A Treatije of the
Year, and in all Climates; then by this Corollary, more or lefs Heat will be generated in the Blood of the fame Body in a given Time, as the Air is colder or hotter; which cannot be, unlefs the Air when it is cold abounds more with this Acid, than when it is hot: And that it does fo, appears from Fire burning beft when the Air is coldeft, and worft when it is hottelt. Now if the Air be cooled by the fame Acid which generates Heat in the Blood when mixed with it ; then as the Air abounds more or lefs with this Acid, the Air will be colder or hotter; and more or lefs Heat will be both generated and loft in the Blood, in a given Time.

By the $24^{t h}$ Propofition, the Acid of the Air diffolves or attenuates the Blood, at the fame Time it generates Heat in it ; and the Diffolution or Attenuation will be greater or lefs, as more or lefs of

$$
\text { Animal OECONOMY. } 2 \text { II }
$$

this Acid is mixed with the Blood in a given Time: And therefore the Blood will be more diffolved or attenuated in Winter than in Summer, in cold Countries than in hot. And if the Want of a fufficient Diffolution or Attenuation of the Blood be the Caufe of Malignant Difeafes; Bodies will be more fubject to fuch Difeafes in Summer and hot Countries, than in Winter and cold Countries.

This is the general Law of the Attenuation of the Blood, and Heat generated in it, in a given Time, on Suppofition that the Degree of Heat in the Blood is given : However, it may fometimes happen, that the Attenuation of the Blood and Heat generated in it may not be proportional to the Degree of Coldnefs in the Air. For the Air may be fo exceffively cold, and fo greatly faturated with this Acid, that the mw-

D d 2
tual

2 I2 A Treatife of the
tual Attraction of its Particles, arifling from their Clofenefs to one another, may hinder them from being drawn into the Blood in as great a Quantity, as when the Air abounds left with them: And whenever this happens, the Fluidity and Heat of the Blood will be deftroyed fatter than they are generated; and if this continues for any Time, it mull of Neceffity put an End to Life. The Cafe here is much the fame as in Oil of Vitriol, and fome other Acids; which from their too great Strength will not diffolve Metals fo quickly, nor raife fo great a Heat, as the fame Acids when made weaker.

Propofition XXVI.

(F healthful Bodies be Situated alike with respect to the Horizon, if

Animal OEconomy. 213

 the Motions of their Hearts and Lungs be free from the Influences of all difturbing Caufes, if the mean Capacities of their Syftems of Air-Veffels be proportional to the mean Capacities of their Syjtems of Blood-Veffels, and if the mean Numbers of their Infpirations in a given Time be proportional to the mean Numbers of their Pulfes in that Time; the mean Quantities of frefb Air infpired, will be as the mean Quantities of Blood which flow thro' their Langs in the given Time.Since by Suppofition, the Bodies are fituated alike with refpect to the Horizon, and their Hearts are free from the Influences of all difturbing Caufes; the mean Capacities of the Syftems of Blood-Veffels of Bodies of different Lengths, will be as the mean Capacities of correfponding Veffels, that is, as the Squares of their mean Diameters into their

> Lengths,

214 A Treatife of the

Lengths, or into the Lengths of the Bodies; therefore, the mean Capacities of the Syftems of BloodVeffels of Bodies of two different Lengths, will be as $D^{2} L$ and $d^{2} l, D$ and d denoting the mean Diameters of any two correfponding Veffels, and L and 1 the Lengths of the Bodies: Since likewife by Suppofition, the mean Capacities of the Syftems of Air-Veffels are as the mean Ca pacities of the Syftems of BloodVeffels; the mean Capacities of the Syftems of Air-Veffels of Bodies of two different Lengths, will be as $\mathrm{D}^{2} \mathrm{~L}$ and $\mathrm{d}^{2} \mathrm{l}$, when the Bodies are fitting and their Hearts free from the Influences of all difturbing Caufes: And fince alfo by Suppofition, the mean Numbers of Infpirations are as the mean Numbers of Pulfes in a given Time; the mean Quantities of frefh Air infpired by healthful Bodies of two different Lengths,

Animal OECONOMy. 215

 will be as the mean Capacities of their Syftems of Air-Veffels and mean Numbers of their Pulfes in that Time taken together, that is, as $D^{2} L P$ and $d^{2} l p, P$ and p denoting the mean Numbers of Pulfes in the given Time: But by the firf Corollary of the 14th Propofition, P. $\mathrm{p}:: \frac{\mathrm{V}}{\mathrm{L}} \cdot \frac{\mathrm{v}}{\mathrm{I}}:$ And therefore, the Quantities of frefh Air infpired in a given Time will be as $\mathrm{D}^{2} \mathrm{~V}$ and $\mathrm{d}^{2} \mathrm{v}$, that is, as the mean Quantities of Blood which flow thro' the Lungs in the given Time.The mean Numbers of Pulfes and Infpirations in a Minute of healthful Bodies of three differentLengths, in the Morning when they were fitting, were $65,72,116$, and 17, 19, 30. Hence it appears, that the mean Numbers of Pulfes and Infpirations in a given Time, are proportional to one another in health-

216 A Treatife of the
healthful Bodies, when they are $\mathrm{f}_{1}-$ tuated alike with refpect to the Horizon, and their Hearts are free from the Influences of all difturbing Caufes: And if from Experiments it fhall be found, that the mean Capacities of the Syftems of Air-Veffels are proportional to the mean Capacities of the Syftems of BloodVeffels; then will this Propolition be true in healthful Bodies.

Cor. I. If this Propofition be true; the mean Quantities of frefh Air infpired in a given Time by healthful Bodies, will be in Ratios compounded of the duplicate and fubduplicate Ratios of the mean Diameters of correfponding Blood-Veffels, that is, as $D^{2} \sqrt{ } D$ and $d^{2} \sqrt{ } d$. For V.v:: VD. Vd, by the Twelfth Propofition: But the Quantities of frefh Air infpired in a given Time, are as $D^{2} V$ and $d^{2} v$, by this Propo-

Animal OE conomy. 217 fition: And therefore, the Quantities of frefh Air infpired in a given Time will be as $D^{2} \sqrt{ }$ and $d^{2} \sqrt{ } d$.

Cor. 2. If this Propofition be true; the mean Quantities of Air infpired in a given Time by healthful Bodies of different Lengths, will be in Ratios compounded of the fimple and fubquadruplicate Ratios of the Lengths of the Bodies, that is, $L \times L^{\frac{1}{4}}$ and $1 \times 1^{\frac{7}{4}}$. For D. $\mathrm{d}:: \mathrm{L}^{\frac{2}{2}} .1^{\frac{\pi}{2}}$, by Cor. 4. Prop. 12 ; and by Confequence, $\mathrm{D}^{2} \vee$ D. $\mathrm{d}^{2} \vee \mathrm{~d}:: \mathrm{L} \times \mathrm{L}^{\frac{3}{4}} .1 \times 1^{\frac{2}{4}}:$ But the mean Quantities are as $\mathrm{D}^{2} \sqrt{ } \mathrm{D}$ and $\mathrm{d}^{2} \sqrt{ } \mathrm{~d}$, by the laft Co rollary: And therefore, they will be as $L \times L^{\frac{1}{4}}$ and $1 \times\left.\right|^{\frac{1}{4}}$.

Cor. 3. If this Propofition be true; the mean Quantities of Air infpired in a given Time by healthful Bodies of different Lengths, will be in E e

Ratios

218 A Treative of the
Ratios compounded of the duplicate Ratios of the Lengths of the Bodies and the fimple Ratios of the Numbers of their Pulfes in a given Time, that is, as $L^{2} P$ and $l^{2} p$. For by this Propofition, the mean Quantities of Air infpired in a given Time are as $D^{2} V$ and $d^{2} v$: But by Cor. 4 . Prop. 12, $\mathrm{D}^{2} . \mathrm{d}^{2}:: \mathrm{L} .1$, and by Cor. 1. Prop.14, V.v::LP.1p: And therefore, the mean Quantities of Air infpired in a given Time will be as $L^{2} P$ and $l^{2} p$.

Cor. 4. If this Propofition be true; the Quantities of frefh Air infpired in a given Time in Proportion to the whole Quantities of Blood, will be as the Numbers of Pulfes in a given Time. For $\frac{V}{L}, \frac{v}{1}::$ P. P, by Cor.1. Prop. 14: But $\frac{V}{L} \cdot \frac{V}{1}:: \frac{D^{2} V}{D^{2} L} \cdot \frac{d^{2} v}{d^{2} 1}$: And therefore, $\frac{D^{2} V}{D^{2} L} \cdot \frac{d^{2} v}{d^{2} l}::$ P. p.

SEC-

ANIMAL OECONOMY. 219

SECTION III.

Of Digefion and Nutrition, Secretion, and the Difcharges of Human Bodies.

Of Digeftion and Nutrition.

Propofition XXVII.

THE Nourifbment of Animals changes its Texture in their Bodies, till it becomes like their Jolid and durable Parts.

For the folid and durable Parts of Animal Bodies grow out of their Nourifhment: But their Growth is from an Addition and Adhefion of like Parts: And therefore, the Nourifhment of Animals changes its Ee 2 Tex-

220 A Treatise of the
Texture in their Bodies till it becomes like their folid and durable Parts.

Cor. I. Hence it appears, that Animals will not be rightly nowrifhed, when their Nourifhment does not change its Texture in their Bodies till it becomes like their folid and durable Parts.

Cor. 2. Hence it appears, that the Nourifhment, by changing its Textore in the Bodies of Animals, becomes more dry and earthy than it was before; otherwife, it would not be like their fold and durable Parts.

0060009000000000000cocs

Propofition XXVIII.

THE Texture of the Nourishment is changed in the Bodies - Animals, by a gentle Heat and Motion.

The

Animal OEconomy.

The firft remarkable Change in the Texture of the Nourithment is made in the Stomach: In this Bowel the folid Parts of the Food are diffolved and intimately mixed with the Fluids. This Mixture is ufually called Cbyle.

Some, from obferving that Fluids have a Power of diffolving Bodies, have thought that a Fluid in the Stomach diffolves the Food and turns it into Chyle: But as it does not appear from Experiments and Obfervations, that there is a Fluid in the Stomach endued with fuch a Power; this Opinion is without Foundation.

Others, from obferving the great Strength of the Gizzards of Fowls, and that there is commonly Gravel found in them, have imagined, that the Food is diffolved in the Stomachs of Fowls, and confequently in the Stomachs of all Animals, by

Attrition or Grinding. But if this Opinion be examined, it will likewife appear to be without Foundation. For the Food of Fowls is moftly Grain, all Sorts of which are hard and covered with tough Skins; and therefore, before this Food can be diffolved and turned into Chyle, it mult be foftened, and its Skins ground off; the firft of which is done by Warmth and Moifture in the Craw, and the fecond by Attrition in the Gizzard. By thefe Contrivances, the Food of Fowl is prepared and fitted for Di geftion ; as human Food is by Cookery and other Ways of preparing it, and by the grinding of the Teeth. But if we fhould grant, that the Food of Fowl is diffolved and turned into Chyle by Attrition; it will by no means follow, that Food is fo diffolved and turned into Chyle in a human Stomach, which has no Gra-

$$
\text { ANIMAL OECONOMY. } 223
$$ vel in it, and has but very little Mufcular Strength in Comparifon of the Gizzards of Fowls. There may be many different Contrivances in different Species of Animals, to foften, grofly divide, and prepare their Food for Digeftion; but it will not from thence follow, that their Food is digetted or turned into Chyle by different Caules.

The Food is diffolved and turned into Chyle by a gentle Heat and Motion. Heat makes many Bodies fluid, which are not fluid in Cold. Lead is melted by a Heat eight times as great as the external Heat of a human Body; Tin, by a Heat fix times as great; Wax, by a Heat twice as great; and Bones, with the Addition of a little Water, are diffolved in a Digefter by Heat in a little Time. If the Heat of the Stomach be nearly equal to that of the Blood; this Heat, tho' gentle, may be fufficient, when

224
 A Treatife of the

when the Orifices of the Stomach are pretty exactly clofed, to diffolve the Food in a few Hours, and turn it into Chyle ; efpecially, when it is affifted by the Motion of the Stomach, which by agitating and mixing the Food will contribute to this End. For fince Heat can diffolve folid Bodies, and nothing is found in a human Stomach, befides a gentle Heat and Motion, which can diffolve the Food and turn it into Chyle; it will follow, that the Food is digefted or diffolved, and turned into Chyle, by a gentle Heat and Motion.

The Chyle in moving through the Inteftines is farther diffolved by Heat and Motion: And the fineft Part of this Fluid being conveyed into the Blood, is ftill farther changed by the fame Caufes, namely a gentle Heat and Motion, till it puts on the Form of Blood, and,

Animal OEconomy. 225

 and, at laft, becomes fit to nourifh the Body, by being made like its folid and durable Parts. The Growth of the Pullet in the Shell out of the White of the Egg, is a ftrong Proof of the Truth of this: For here is manifeftly nothing, befides a gentle Heat and Motion, to change the White of the Egg, fo as to convert it into Blood, and render it fit Nourifhment for all the Parts of an Animal Body.Cor. Hence Animals will not be rightly nourifhed, when the Texture of their Food is not rightly changed in their Bodies by Heat and Motion; which may be owing, either to an Unfitnefs in the Food for fuch a Change, or to Degrees of Heat and Motion unfit to effect it.

226
 A Treatise of the

$0000090006+5009090900$

Propofition XXIX.

HE confituent Solid Parts of Animals, according to their Several Natures, are endued with peculiar attractive Powers of certain Magnitudes; by which they draw out of the Fluids moving throw them like Parts in certain Quantities, and thereby preserve their Forms and just Magnitudes.

For without attractive Powers agreeable to their Natures, the conftituent fold Parts of Animals cannot draw like Particles out of the Fluids moving through them; and confequently, cannot preferve their Forms: And unlefs there Powers be of certain Magnitudes, they cannot draw thole Parts in fuch Quantities as are proper to preferve their Magnitudes:

Animal OEconomy. 227 nitudes: And therefore, the Propofition is true.

Cor. I. Hence Bodies will not be rightly nourifhed by proper Food changed by juft Degrees of Heat and Motion, when the attractive Powers of their folid Parts are changed, either in their Natures, or in their Magnitudes.

Cor. 2. Hence Animals of the fame Species will grow fafter or flower, out of the fame Nourifhment rightly changed by Hear and Moon; as the attractive Powers of their folid Parts are ftronger or weaker. And univerfally, their Growth in a given Time will be greater or lefs; as the attractive Powers of correfponding Parts are greater or lefs; or as the Fluids moving thro' thofe Parts abound more or lefs with fimilar Particles, that is, with PartiFf 2
cles

228 A Treatile of the
cles rightly fitted to be attracted by thofe Powers.

General Scholium.

I have fhewn that the Nourifhment of A nimals becomes more dry and earthy in their Bodies, and that this Change is effected by a gentle Heat and Motion. How a gentle Heat and Motion caufe this Change in the Nourihment, may be underftood from what Sir Ifaac Newton has delivered concerning the Nature of Salt. This great Man, finding from Experiments and Obfervations, that Salts are dry Earth and watry Acid united by Attraction, and that the Earth will not become a Salt without fo much Acid as makes it diffolvable in Water, has given the following Account of the Formation of Particles of Salt. " As Gravity makes the Sea flow " round the denfer and weightier " Parts

Animal OEconomy. 229

"Parts of the Globe of the Earth, " fo the Attraction may make the " watry Acid flow round the den"fer and compacter Particles of " Earth for compofing the Parti" cles of Salt. For otherwife the " Acid would not do the Office of " a Medium between the Earth and " common Water, for making Salts " diffolvable in Water ; nor would "Salt of Tartar readily draw off " the Acid from diffolved Metals, " nor Metals the Acid from Mercury. Now as in the great Globe " of the Earth and Sea, the denfeft " Bodies by theirGravity fink down " in Water, and always endeavour " to go towards the Centre of the
" Globe; fo in Particles of Salt, " the denfeft Matter may always " endeavour to approach the Cen" ter of the Particle: So that a Par" ticle of Salt may be compared to " a Chaos; being denfe, hard, dry, " and

230 A Treatife of the
" and earthy in the Center; and " rare, foft, moift, and watry " in the Circumference. And " hence it feems to be that Salts " are of a lafting Nature, being " fcarce deftroy'd, unlefs by draw" ing away their watry Parts by " Violence, or by letting them foak ", into the Pores of the Central " Earth by a gentle Heat in Pu" trefaction, until the Earth be dif" folved by the Water, and fepara" ted into fmaller Particles, which " by reafon of their Smallnefs make " the rotten Compound appear of " a black Colour. Hence alfo it " may be that the Parts of Ani" mals and Vegetables preferve " their feveral Forms, and affimi" milate their Nourifhment; the " foft and moift Nourifhment ea" fily changing its Texture by a " gentle Heat and Motion, till it " becomes like the denfe, hard, "dry,

Animal OEconomy. 23 I "s dry, and durable Earth in the " Center of each Particle. But " when the Nourifhment grows un" fit to be affimilated, or the Cen" tral Earth grows too feeble to affi" milate it, the Motion ends inCon" fufion, Putrefaction and Death. Newt. Opt. p. 361, 362 .

Hence it appears, that to render the faline Part of the Aliment fit to nourifh the folid Parts of Animals and Vegetables, part of the fuper-ficial watry Acid muft by Heat and Motion be drawn off from the Particles of Salt; by which they will become more denfe, hard, dry and earthy, like the folid and durable Parts of the Bodies. And, accord ing to the different Degrees of Heat and Motion in the different Species of Animals and Vegetables, the watry Moifture will be drawn off in different Proportions, fo as in each Species to render the Particles like

232 A Treatife of the
the folid Parts of the Bodies of that Species.

And farther, if we confider that Water is a very fluid taftlefs Salt, and that Animals and Vegetables, with their feveral Parts, grow out of Water and watry Tinctures and Salts; we may from what has been faid underftand the Manner in which the Nourifhment of Animals and Vegetables is changed by a gentle Heat and Motion, till it becomes like the folid and durable Parts of their refpective Bodies.

Of

Animal OEconomy. 233

1

Of Secretion.

Propofition XXX.

THE Glands in the Bodies of Animals, according to their Several Natures and Difpofitions, are endued with peculiar attrattive Powers by which they fuck in various Juices from the Blood.

That the Glands of Animals have fuch attractive Powers, I thall prove from Experiments and Obfervations.
"If two plane polifhed Plates of " Glafs (fuppofe two Pieces of a "s polifhed Looking-Glafs) be laid " together, fo that their Sides be " parallel and at a very fmall Di" ftance from one another, and "s then their lower Edges be dip-

$$
\text { G g } \quad \text { ped }
$$

234 A Treative of the

" ped into Water, the Water will " rife up between them. And the " lefs the Diftance of the Glaffes is, " the greater will be the Height to " which the Water will rife. If " the Diftance be about the hund" redth part of an Inch, the Water " will rife to the Height of about " an Inch ; and if the Diftance be " greater or lefs in any Proporti" on, the Height will be recipro" cally proportional to the Dift" ance very nearly. The Weight " of the Water drawn up being the "fame, whether the Diftance be" tween the Glaffes be greater or " lefs; the Force which raifes the "Water and fufpends it mult be " likewife the fame, and fuffer no "Change by changing the Dif" tance of the Glaffes. And in " like Manner, Water afcends " between two Marbles polifhed " plane, when their polifhed Sides " are

Animal OEconomy. 235

 " are parallel and at a very little "Diftance from one another. And " if flender Pipes of Glass be dip"ped at one End into ftagnating "Water, the Water will rife up " within the Pipe, and the Height " to which it fifes will be recipro"sally proportional to the Did" meter of the Cavity of the Pipe, " and will equal the Height to " which it riffs between two Planes " of Glass, if the Semidiameter of " the Cavity of the Pipe be equal " to the Diftance between the "Planes, or thereabouts. And " thee Experiments fucceed after " the fame Manner in vacuo as in " the open Air, (as hath been try'd " before the Royal Society,) and " therefore are not influenced by " the Weight or Preffure of the At" mofphere. See Newt. Opt. p. 366, 36% 。236 A Treatife of the
Now fince the Rife and Sufpenfion of Water between two Glafs Planes and in fmall Glafs Pipes, are not owing to the Preffure of the Atmofphere ; they muft be caufed by an attractive Power in the Glafs, which will be proportional to the Weight of Water fuftained by it. Let H, h denote the Heights of the Column of Water futtained between the two Glafs Planes and of the Cy linder fuftained in a fmall Glafs Pipe; B, p the Breadth of the Column and Periphery of the Cylinder; and D, d the Thicknefs of the Column and Diameter of the Cylinder: And then the attractive Power which fuftains the Column will be as HBD , or as B, becaufe H is as $\frac{\mathrm{I}}{\mathrm{D}}$; and the attractivePower which fuftains theCylinder will be as $\frac{\mathrm{hpd}}{4}$, or as $\frac{\mathrm{p}}{4}$, or as p, becaufe h is as $\frac{1}{d}$.

Hence

Animal OEconomy. $\quad 237$

Hence it appears, that the attractive Power which fuftains the Water arifes only from thofe Parts of the Glals which are contiguous to the Surface of the elevated Water; or more truly, from the Parts of a narrow Surface of the Glafs, whofe Edge touches the lower Surface of the Water, and whofe Height is the fmall given Diftance to which the attractive Power with which Glafs attracts Water reaches; and therefore, the attractive Powers of the Glafs Planes and fmall Glafs Pipe will be as 2 B and p . Now the Powers are as the Weights fuftained by them, that is, 2B. p::HBD. $\frac{\text { hpd }}{4}$: WhenceHD will be equal to $\frac{\mathrm{hd}}{2}$; and when D is equal to $\frac{d}{2}, \mathrm{H}$ will be equal to h.

238 A Treatije of the One and the fame fmall Glafs Pipe will fuftain different Weights of different Fluids, as appears from this Table :

Fluids.	Heights Inches	$\begin{gathered} \text { Denfi- } \\ \text { ties. } \end{gathered}$	Weights.
Oil of Vitriol	I. I	17245	18969
Water p.6. Sal Gem p. ${ }^{\frac{3}{4}}$	I. 73	10921	18893
Water p.6. Sal Gem p. $\frac{\text { I }}{2}$	I. 72	10642	18304
Water p.8. Common Salr p. $\frac{1}{2}$	1. 67	10447	17446
Water p. 6. Salt-perre P. ${ }_{2}^{\frac{1}{2}}$	1. 71	10447	17864
Spirit of Vitriol	I. 63	I1860	19331
German Spa-Water	I. 75	10111	17694
Common Water cold	I. 75	10000	17500
Common Water boiling hot	I. 64	9781	15040
Good Blood	I. 64	10100	17056
Serum of good Blood	I. 65	10300	16995
Serum in a Droply	1. 65	10171	16782
Urine	I. 60	10270	16432
Saliva	I. 54	10100	15554
Milk of a Cow	1. 42	10279	14596
Gall of an Ox	I.	10335	12402
Small Beer	I. 44	10111	14559
Cyder	I. 3	roili	13144
Vinegar	I. 23	10279	12643
Common Ale	I. 2	10300	12360
Red Wine	1. 15	9930	11419
Punch	I. 12	10055	11261
Oil Olive	I. I_{4}	9130	10408
Oil of Turpentine	C. 8 I	9244	7487
Sal Volatile Oleofum	-. 84	8774	7370
Brandy	0. 75	9320	6990
Spirit of Wine rectified	0. 73	8324	6076
Spirit of Harts-horn	I. 44	9802	14114

Animal OEconomy. 239
In the firft Column are the Names of the Fluids, in the fecond the Heights to which they rofe in one and the fame Glafs Pipe, in the third the Denfities of the Fluids, and in the fourth the Weights fuftained by the fame Pipe. I obtained the Weights by multiplying the Heights into the Denfities. For the Weights of Cylinders are as their Magnitudes and Denfities taken together, or as their Heights and Denfities taken together if their Bafes be equal: But the Bafes of all the Cylinders of different Fluids fuftained by one and the fame Pipe are equal: And therefore, the Weights of fuch Cylinders are as their Heights and Denfities taken together.

Hence it appears, that one and the fame Glafs Pipe attracts different Fluids with different Degrees of Force. It attracts Spirit of Vitriol more ftrongly than Oil of Vitriol, Oil of Vitriol
240. A Treatife of the

Vitriol more ftrongly than Water impregnated with Salt, Water impregnated with Sal Gem and Nitre more ftrongly than common Water cold, common Water cold more Atrongly than the Animal Fluids and common Water made boiling hot, the Animal Fluids more ftrongly than fermented Liquers, fermented Liquors more ftrongly than Oils, and Oils more ftrongly than ardent Spirits.

Since the fame Glafs Pipe attracts different Fluids with different Degrees of Force; it is evident, that it attracts the Parts of fome Fluids more ftrongly than thofe of others; and by Confequence, if equal Quantities of all the Fluids of this Table were mixed together, it would fuck in different Parts of this heterogeneous Fluid in different Proportions. It would fuck in more Parts of Water impregnated with Salt than

Animal OEconomy. 24 I

 than of Oil or ardent Spirits. The Parts leaft attracted would be driven off, to make way for thofe which are moft attracted to enter into the Pipe; as in a Fluid where the Force of Gravity alone takes place the lighter Bodies are forced to afcend, to make way for the Defcent of Bodies which are heavier.Sir Ifaac Newton has proved from Experiments, that the Particles of Light attract ardent Spirits and Oil more ftrongly than Water: And by Confequence, if we fuppofe a fmall Pipe to be formed out of the Particles of Light, and one End of it to be dipped into a heterogeneous Fluid formed out of equal Quantities of all the Fluids of this Table intimately mixed together; this Pipe would attract the Parts of Oil and ardent Spirits more ftrongly than thofe of Water, and would fuck in
$242 \quad$ A Treatife of the
more Parts of the two former than of the latter. The Fluid therefore drawn out of the heterogeneous Fluid by this Pipe, would be different from the Fluid drawn out of it by a fmall Glafs Pipe ; for two Fluids will be different, when they either confift of different Parts, or of the fame Parts mixed in different Proportions.

Now fince Pipes of different Na tures mult draw off different Fluids from one and the fame heterogeneous Fluid; it follows, that the fecerning Pipes of the Glands, according to their different Natures and Difpofitions, fuck in various Juices from the Blood, which is a heterogencous Fluid confifting of a great Variety of Parts. And confequently, the Propofition is true.

Propo-

Animal OEconomy. 243

运

Propofition XXXI.

IF Human Bodies have the fame Number of corresponding Glands, if corresponding Glands bave the Same Number of correfponding fecerning Pipes arijing out of correfponding Blood-Veffets, if the Lengtbs of correfponding Pipes be as the Lengths of the Bodies, if the Bodies be fituated alike with refpect to the Horizon, their Hearts be alike free from the Influences of difturbing Caufes, and their Blood be alike faturated with Parts fit for. Secretion; the Quantities of Humour difcharged by correfponding Glands in a given. Time, will be in Ratios compounded of the fefquiplicate Ratios of the Diameters of correfponding Blood-Veffels and of the fubduplicate Ratios of the Forces which move the fecerned Humours through

$$
\mathrm{Hh}_{2} \text { cor- }
$$

244 A Treatije of the corresponding Secerning Pipes, directFy; and of the fubduplicate Ratios of the Lengths of the Bodies, invert $l y$. If Z, z denote the Quantities difcharged by two corresponding Glands in a given Time; F, f the Forces which move the Humours through two corresponding Secerning Pipes; D, d the Diameters of two corresponding BloodVeffels; and L, 1 the Lengths of the Bodies; I fay, that Z. z :: D V $\frac{\mathrm{DF}}{\mathrm{L}}$. $\mathrm{d} \boldsymbol{\downarrow} \frac{\mathrm{d} f}{\mathrm{f}}$.

For, allowing the Suppofitions made in this Proposition to be true, it is evident, that the Quantities of Humour difcharged by correfponding Glands in a given Time, will be as the Quantities difcharged by any of their correfponding fecerning Pipes in that Time: But the Quantities difcharged by carefponding fecerning Pipes in a given Time,

Animal OEconomy. $\quad 245$

Time, will be as the Squares of their Diameters and the Velocities of the Humour flowing thro them taken together ; or as the Squares of the Diameters of the Blood-Veffels out of which the Pipes arife and the Velocities of the Humour flowing through the Pipes taken together, becaufe the Diameters of the Pipes are as the Diameters of the BloodVeffels out of which they arife; and the Velocities of the Humour flowing thro' correfponding Pipes, will by Prop. 1. be in Ratios compounded of the direct fubduplicate Ratios of the Forces which move the Humour thro' them; and the inverfe fubduplicate Ratios of the Diameters and of the Lengths of the Pipes, or of the Diameters of correfponding Blood-Veffels and of the Lengths of the Bodies: And therefore, allowing the Suppofititions in this Propofition, the Quantities

246 A Treatife of the
tities of Humour difcharged by correfponding Glands in a given Time, will be in Ratios compounded of the duplicate Ratios of the Diameters of correfponding Blood-Veffels and of the fubduplicate Ratios of the Forces which move the Humour thro' correfponding fecerning Pipes, directly; and of the fubduplicate Ratios of the Diameters of correfponding Blood-Veffels and of the Lengths of the Bodies, inverfly; that is, Z. $z:: D^{2} \sqrt{\frac{F}{D L}} \cdot d^{2} V \frac{f}{d!}$. But $D^{2} \sqrt{\frac{F}{D L}}$. $\mathrm{d}^{2} \sqrt{\mathrm{~d} I}:: \mathrm{D} \sqrt{\mathrm{DF}} \frac{\mathrm{L}}{\mathrm{d}} \boldsymbol{\mathrm { d }} \sqrt{\mathrm{d} f}$ f And therefore, Z. $\mathrm{z}:: \mathrm{D} \sqrt{\mathrm{DF}} \mathrm{L} \cdot \mathrm{d} \sqrt{\mathrm{df}}$.

Cor. I. If this Propofition be true, and if the moving Forces of correfponding fecerning Pipes be as their Diameters, or as the Diameters of correfponding Blood-Veffels; the Quantities of Humour difcharged by

Animal OECOnomy. 247

by correfponding Glands in a given Time, will be in Ratios compounded of the duplicate Ratios of the Diameters of correfponding BloodVeffels directly, and of the fubduplicate Ratios of the Lengths of the Bodies inverfly. And the mean Quantities of Humour difcharged in a given Time, will be in fubduplicate Ratios of the Lengths of the Bodies. If F.f :: D. d; then will Z. $z:: \frac{D^{2}}{\sqrt{L}}$. $\frac{\mathrm{d}^{2}}{\sqrt{1}}$. And fince by Cor. 4. Prop. I2. the mean Diameters of correfponding Blood-Veffels of Bodies of different Lengths, are in the fubduplicate Ratios of the Lengths of the Bodies ; if D, d denote the mean Diameters of correfponding Blood-Veffels of Bodies of different Lengths, and Z, z the mean Quantities of Humour difcharged by correfponding Glands in a given Time; then $\mathrm{Z} . \mathrm{z}:: \sqrt{ } \mathrm{L}$ 。 $\sqrt{ }$ l。
$248 \quad$ A-Treatife of the
Cor. 2. If this Propofition be true, and if the moving Forces of correfponding lecerning Pipes be as the internal Surfaces of the Pipes, that is, as their Diameters and Lengths taken together, or as the Diameters of correfponding Blood-V effels and Lengths of the Bodies taken together $\%$ the Quantities difcharged by correfponding Glands in a given Time, will be in the duplicate Ratios of the Diameters of correfponding Blood-Veffels. And the mean Quantities difcharged by correfponding Glands in a given Time will be as the Lengths of the Bodies. If F. f:: D L. dl ; then will Z. z:: D ${ }^{2}$. d^{2}. And, fuppofing $\mathrm{D}, \mathrm{d}, \mathrm{Z}, \mathrm{z}$ to denote mean Diameters of correfponding Blood-Veffels of Bodies of different Lengths, and mean Quantities of Humour difcharged by correfponding Glands in a given Time; then Z. z:: L. l.

Cor.

Animal OEconomy. 249

Cor. 3. If this Propofition be true, and if the moving Forces of correfponding fecerning Pipes be as the Capacities of the Pipes, or as the Capacities of correfponding BloodVeffels; the Quantities of Humour difcharged by correfponding Glands in a given Time, will be in Ratios compounded of the duplicate and fubduplicate Ratios of the Diameters of correfponding Blood-Veffels. And the mean Quantities of $\mathrm{Hu}-$ mour difcharged by correfponding Glands in a given Time, will be in Ratios compounded of the fimple and fubquadruplicate Ratios of the Lengths of the Bodies. If $\mathrm{F} . \mathrm{f}::$ D^{2} L. $\mathrm{d}^{2} 1$; then will $\mathrm{Z} . \mathrm{z}:: \mathrm{D}^{2} \sqrt{ } \mathrm{D}$. $\mathrm{d}^{2} \sqrt{2}$. And fuppofing D, d, Z, z to denote mean Diameters of correfponding Blood-Veffels of Bodies of different Lengths, and mean Quantities of Humour difcharged by correfponding Glands in a given I i

Time;

250
 A Treatife of the

Time; then, fince the mean Diameters of correfponding Blood-Veffels of Bodies of different Lengths are in the fubduplicate Ratios of the Lengths of the Bodies, Z. $\mathrm{z}:$: $\mathrm{L} \times \mathrm{L}^{\frac{1}{4}} .1 \times 1^{\frac{\mathrm{I}}{4}}$.

Cor. 4. If this Propofition be true, and if the moving Forces of correfponding fecerning Pipes be as the Capacities of the Pipes, or as the Capacities of correfponding BloodVeffels ; the Sums of the Quantities difcharged by all the correfponding Glands, or any given Number of them, in a given Time, will be in Ratios compounded of the duplicate and fubduplicate Ratios of the Diameters of correfponding BloodVeffels : For, fince the Difcharges of any two correfponding Glands are in thefe Ratios; the Sum of the Difcharges of all the Glands, or of

Animal OEconomy. 25 I

 any given Number of correfponding Glands, will be in the fame Ratios. If S, s denote thofe Sums, then S. s:: $D^{2} \sqrt{ }$ D. $\mathrm{d}^{2} \sqrt{ }$ d. And if S, s, D, d denote the mean Sums of the Difcharges in a given Time and mean Diameters of correfponding Blood-Veffels of Bodies of different Lengths, each Mean being taken from a confiderable Number of Bodies of the fame Length; then, fince the mean Diameters of correfponding Blood-Veffels are in the fubduplicate Ratios of the Lengths of the Bodies, S.s :: $L \times L^{\frac{3}{4}} .1 \times 1^{\frac{3}{4}}$.
$1{ }^{1} 2$

252 A Treatife of the

Of the Difcharges of Human Bodies.

Propofition XXXII.

THE Mean Quantities of Food and Discharges in a natural Day, taken from all the Food and Discharges of a Month, are nearly. equal in healthful Bodies.

For I have found by ftatical Experiments, that tho the Food and Difcharges of healthful Bodies be rarely equal in fingle Days; yet the mean Quantities in a natural Day, taken from all the Food and Diffcharges of a Month, are always nearly equal. And therefore, the Proposition is true.

Here it may be proper to take notice of three Things, which by

Some may be thought Objections againft this Propofition.

The firft is the Difference which has been found in the Weight of a grown healthful Body at different Seafons of the Year. Sanctorius fays, that temperate Bodies are three Pounds heavier in Winter than they are in Summer, and that the Augmentation and Diminution of Weight are made in Autumn and the Beginning of Summer. And in this Climate I have found, that healthful Bodies are heavier in Winter than in Summer, and that they grow heavier in Autumn, and lighter again in the Spring; but for want of a fufficient Number of Experiments, I have not been able to determine, how much grown healthful Bodies taken one with another are heavier in Winter than they are in Summer. They cannot be much heavier; for I have oblerved, and the fame ob-

$$
254 \text { A Treatije of the }
$$

tains in Italy, that any confiderable Increafe of Weight made in a fmall Compals of Time, is very apt to caufe Difeafes. If we fuppofe Bodies to be four Averdupois Pounds heavier, and that they gain this Weight in Autumn and lofe it in the Spring, in the Space of two Months; then the Food will exceed the Difcharges in Autumn and fall fhort of them in the Spring, by an Ounce in a Day taking one Day with another: But an Ounce is fo fmall a Difference between the Food and Difcharges in a natural Day, that they may be truly faid to be nearly equal in a grown healthful Body at all Seafons of the Year.

The fecond is the Change which is continually made in the Weight of a growing Body; but if we confider the Quantity and Time of its Growth, we thall find its Food and Difcharges in a natural Day to be

Animal OEconomy. 255

 very nearly equal. For if a Child when it is born weigh 12 Pounds, and in twenty Years (which I fhall fuppofe to be the Time of growing) come to weigh i 68 Pounds; the Food will exceed the Difcharges in a natural Day, taking one Day of the whole Time of its Growth with another, by fomething more than the third part of an Ounce. 'Tis true a healthful Child from its feeding plentifully, fleeping much, and wanting Exercife, grows much more the firt half Year than it does afterwards in the fame Compafs of Time; and yet even then there is but little Difference between the Food and Difcharges in a natural Day, taking one Day with another. For if its Weight when it is born be doubled in the firt half Year, the Food will exceed the Difcharges by little more than an Ounce in a Day, taking one Day with another. Therefore the Food
256 A Treatife of the

Food and Difcharges in a natural Day may be truly faid to be nearly equal in a healthful Body.

The third is the great Change which we frequently fee made in the Weights of grown Bodies in the Compals of a few Years; and yet if we confider the Quantity of the Change, and the Time in which it is made; we thall find little Difference between the Food and Difcharges in a natural Day, taking one Day of that Time with another. For if a grown Body gain in Weight 50 Pounds in five Years Time, the Food will not exceed the Difcharges by half an Ounce in a natural Day, taking one Day of that whole Time with another.

Cor. r. If N, n denote the mean Quantities of Food in a natural Day of two healthful Bodies, taken from their whole Quantities of Food in a Month;

Animal OEconomy. 257

Month; and P, U, S, $\mathrm{p}, \mathrm{u}, \mathrm{s}$ the mean Quantities of their Perfpiration, Urine, and Stool, taken from the whole Quantities of thofe Difcharges in a Month; then by this Propofition, $\mathrm{N}=\mathrm{P}+\mathrm{U}+\mathrm{S}$, and $\mathrm{n}=\mathrm{p}+\mathrm{u}+\mathrm{s}$.

Cor. 2. If a healthful Body at all Seafons of the Year take daily the fame Quantity of Food in every Month, taking one Day of the Month with another; the daily Sum of the Difcharges in every Month, taking one Day of the Month with another, will be likewife nearly the fame at all Seafons of the Year. And therefore, if either Perfpiration, Urine, or Stool be greater in fome Months of the Year than in others; the Sum of the other two will be as much lefs: Otherwife the Sum of the three could not be given.

The Truth of thefe two Corollaries will appear from the following Table.

$$
\mathrm{K} k \quad \text { Months }
$$

如	
20,	

This Table was made from a Courfe of Statical Experiments. The natural Day is divided into three Parts, Morning, Afternoon, and Night; the Morning contains fix Hours from eight to two, the Afternoon fix Hours from two to eight, and the Night the remaining twelve Hours. I obferved the Food and the Difcharges in thefe three Parts of the Day, everyDay for eight Months together ; and with the Means taken from all the Food and all the Difcharges in the feveral Months, I compofed the Table: From which it appears,

Firf, That Perfpiration and Urine vary in their Quantities at different Seafons of the Year, and that as one encreafes the other leffens. In April and May they were nearly equal, only Urine exceeded Perfpiration a little in April, and was exceeded by it a little in May. In K k 2 the

260 A Treatise of the
the three Summer Months, June, July, and Auguft, taken one with another, Perfpiration exceeded Uring in the Proportion of about 5 to 3. In October and November they were nearly equal again, only Urime exceeded Perfpiration a little in November. At the End of this Month I was interrupted, and hindered from carrying on the Exporiments throughout the whole Year, as I at firft intended; but I repeated them for about ten Days in cold frofty Weather, and found that Ufine then exceeded Perfpiration as much as Perfpiration exceeded Utine in Summer.

Secondly, That Stool is but a fall Difcharge when compared with Perfixation and Urine, and is but litthe influenced by the Seafons of the Year in healthful Bodies. It was a little larger in May than in the othe Months, from a gentle Darriata,

Animal OEconomy. 26 i

 rbac, for about twenty Days in that Month. And it was a little lefs in October and November, from the Quantity of Food being lefs in thofe Months than in the others.Thirdly, That the daily Food and daily Difcharges taken from all the Food and all the Difcharges of a Month, are nearly equal at all Seafons of the Year in healthful Bodies, only theDifcharges fall a little fhort of the Food in Autumn, and exceed it a little in the Spring. The Difference between the Food and Difcharges at thefe Seafons arifes, from Perfiration being more diminifhed in Autumn by the Cold of the external Air, than Urine is increafed; and more increaled in the Spring by the Warmth of the Air, than Urine is diminifhed. Urine takes up fome Time at thefe Seafons to have its Increafe and Diminution made equal to the Diminution and Increafe of

> Perfpi-

262 A Treatife of the
Perfpiration. And hence it is that Bodies grow heavier in Autumn and lighter in the Spring; and by Confequence, that they are a little heavier in Winter than they are in Summer. The Change of Weight in Spring and Autumn is not great in healthful Bodies, and probably does not exceed above three or four Pounds; for I have known an Increale of five or fix Pounds to have caufed a Difeafe in the latter End of Autumn: But an Increafe of four Pounds in two Months is at the Rate only of about an Ounce in a Day: And the fame Increafe in three Months is at the Rate only of about rwo third Parts of an Ounce in a Day, taking one Day with another.

Animal OEconomy. 263

000 ococochtrosecosen

Propofition XXXIII.

SUppofing the same Things as are fuppofed in the 3 ift Propofition and its 3 d Corollary; and that the Quantities difcharged by Stool ins a natural Day, taken from the whole Quantities of that Dijcharge in a Month, are in the fame Proportion as the daily Difcharges of other correfponding Glands taken from their whole Difcharges in a Month; the Sum of the Difcbarges by Perspiration, Urine, and Stool in a natural Day, taken from their whole Quantities in a Month, will in bealthful Bodies of different Lengths be in Ratios compounded of the duplicate and Jubduplicate Ratios of the Diameters of correfponding Blood-Veffels, that is, $\mathrm{P}+\mathrm{U}+\mathrm{S}, \mathrm{p}+\mathrm{u}+\mathrm{s}:: \mathrm{D}^{2} \sqrt{ } \mathrm{D} \cdot \mathrm{d}^{2} \sqrt{ } \mathrm{~d}$.

$$
264 \quad \text { A Treatife of the }
$$

For the Sums of Perfpiration and Urine in a natural Day, taken from their whole Quantities difcharged in a Month, are in that Proportion by the 4 th Corollary of the 3 If Propo $\sqrt{2}-$ tion: And the Quantities difcharged by Stool in a natural Day, taken from the whole Quantities of that Difcharge in a Month, are by Suppofition as the daily Difcharges of other correfponding Glands taken from their whole Difcharges in a Month : And therefore, the Sums of the three Difcharges in a natural Day, taken from the wholes of their refpective Quantities in a Month, will be in the fame Proportion, that is, $\mathrm{P}+\mathrm{U}+\mathrm{S}, \mathrm{p}+\mathrm{u}+\mathrm{s}:: \mathrm{D}^{2} \sqrt{ } \mathrm{D} . \mathrm{d}^{2} \sqrt{ } \mathrm{~d}$.

Cor. I. If the Diameters of correfponding Blood-Veffels be in the fubduplicate Ratios of the Lengths of the Bodies ; the Sums of theQuantities of Perfpiration, Urine, and Stool

Animal OEconomy. 265

Stool difcharged daily by healthfui Bodies of different Lengths, when each Quantity is taken from the whole of that Difcharge for a Month, will be in Ratios compounded of the fimple and fubquadruplicate Ratios of the Lengths of the Bodies. If D. d:: $\sqrt{L}, V 1$, then will $P+U+S$. $p+u \mp s::$ $\mathrm{L} \times \mathrm{L}^{\frac{3}{4}} .1 \times 1^{\frac{1}{7}}$.

If this Propofition obtain in healthful Bodies; then will this Corollary obtain, when the Diameters of correfponding Blood-Veffels are in the fubduplicate Ratios of the Lengths of the Bodies. They are in this Proportion in perfectly regular and well-proportioned Bodies, when they are fituated alike with refpect to the Horizon, and their Hearts are free from the Influences of all difturbing Caufes; and the mean Diameters of correfponding BloodVeffels of all healthful Bodies of dif-

266 A Treatife of the
ferent Lengths, when each Mean is taken from the Diameters of thofe Veffels in a confiderable Number of Bodies of each Length, are likewife in the fame Proportion: And therefore, if this Propofition be true, the mean Sums of the Quantities of the Difcharges in a natural Day of healthful Bodies of different Lengths, when the Quantity of each Difcharge is taken from its whole Quantity in a Month, will be in Ratios compounded of the fimple and fubquadruplicate Ratios of the Lengths of the Bodies: But thofe Sums of the Difcharges are equal to the mean Quantities of Food in a natural Day, taken from the whole Quantities of Food in a Month, by Cor. r. Prop. 32 : And by Confequence, the mean Quantities of Food in a natural Day of healthful Bodies of two different Lengths, will be in Ratios compounded of the fim-

Animal OEconomy. 267

ple and fubquadruplicate Ratios of thefe Lengths. This Proportion obtains nearly in the Royal and Blew-Boys Hofpital. For upon inquiring into their Food I found, that taking one Day of the Week, and confequently one Day of the Month, with another, the Quantities of Food taken daily by Bodies whofe Lengths are 69 and 54 Inches, are 109 and $8 \rho^{\frac{1}{2}}$ Averdupois Ounces: But thefe Quantities of Food are nearly in Ratios compounded of the fimple and fubquadruplicate Ratios of the Lengths of the Bodies; only the Food of the Boys compared with that of the Men, is greater than in this Proportion by about $5^{\frac{1}{2}}$ Ounces in a Day; which may be owing to the Food of the Boys being fomething more liquid than the Food of the Men, and to their ufing more Exercife. In the Food of the Boys, the liquid part is to the folid part a

$$
\text { L } 12
$$

little more than 3 to I ; and in that of the Men, a little more than $2^{\frac{1}{3}}$ to I .

Lengths of the Bodies in Inches.	The Lengths into the biqua. drate Roots of the Lengths.	Whole Quantities of Food or Difcharges in a nätural Day in Averdup. Ounces.
72	2097	116
69	1988	109
66	1881	103
60	1670	$91 \frac{1}{2}$
54	1463	80
48	1263	69
42	1069	$58 \frac{1}{2}$
36	882	48
30	702	38
24	531	29.
. 8	371	20

This Table in its third Column contains the mean Quantities of Food, or mean Quantities of the Difcharges,

Animal OEconomy. 262

Difcharges, in a natural Day, of healthful Bodies of the Lengths fet down in the firt Column. I computed it by the fecond Column, which contains the Products of the Lengths and biquadrate Roots of the Lengths of the Bodies, taking iog Averdupois Ounces as a proper Quantity of Food for well-proportioned Bodies 69 Inches in Height, on Suppofition that the liquid part of the Food to the folid is in the Proportion above-mentioned. The Food of very young Children, as being wholly liquid, fhould be more than is affigned them by this Table; but what the exact Quantity is I know not for want of Experiments.

Cor. 2. If this Propofition be true, as it appears to be by the laft Corollary; the Sums of the Difcharges by Perfpiration, Urine, and Stool,

270 A Treatife of the
in a natural Day, taken from their whole Quantities in a Month, will in Bodies of equal Lengths be in Ratios compounded of the fimple and fubquadruplicate Ratios of their Quantities of Blood. For the Squares of the Diameters of correfponding Blood-Veffels are as the Quantities of Blood in Bodies of equal Lengths, that is, $D^{2} . \mathrm{d}^{2}::$ Q. q; and the Square-Roots of the fame Diameters, are as the biquadrate Roots of the Quantities, that is, $\sqrt{ } \mathrm{D} . \sqrt{ } \mathrm{d}::$ $Q^{\frac{1}{4}} \cdot q^{\frac{\pi}{4}}:$ And therefore, $P+U+S$. $p+u+s:: Q \times Q^{\frac{\pi}{4}} . q \times q^{\frac{1}{4}}$.

For Inftance, if the Quantities of Blood in two healthful Bodies of the fame Length be as 3 to 2, then $\mathbf{P}+\mathrm{U}+\mathrm{S} . \mathrm{p}+\mathrm{u}+\mathrm{s}:: 39480.23784$. If the Length of the Bodies be fix Feet, and the Quantity of Food in 2 Day of that Body which has the

Animal OEconomy. 271

 greater Quantity of Blood be in6 Ounces; the Quantity of Food in a Day of the other Body will be about 70 Ounces.0000000000900400000000
Propofition XXXIV. Problem V.
T- 0 determine the Proportion which Perspiration bears to Urine at different Seafons of the Year, at different 'Times of the natural Day, under different Kinds and Degrees of Exercise, in Bodies of different Ages, and Bodies which are nourifbed by different Kinds of Food.
I. Perfpiration with refpect to Urine is greater in Summer than in Winter. It was near three times as great in the Body from which the Table in $p .258$ was made, and it is generally greater, tho not in the
$1272 \quad \because$ A Treatife of the
the fame Proportion, in healthful Bodies. A warm Air warms the Skiniand increafes Perfpiration, and a cold Air cools the Skin and leffens Perfpiration; but as Perfpiration increafes or leffens; Urine on the contrary leffens or increafes by that Table: The Proportion of Perfpiration to Urine is regulated by the Heat of the Skin; and as far as the Heat of the Skin is increafed or leffened by the Heat or Cold of the external Air, the Proportion of Perfpiration to Urine will be increafed or leffened by the Heat or Cold of the external Air. Accordingly, I have obferv'd Perfpiration to have been only equal to, nay fometimes to have fallen fhort of, Urine in the Summer-Time, in Bodies which have been little expofed to the Heat and Cold of the external Air. And as far as I can judge from the Obfervations I have made,

Animal OEconomy. 273

 this chiefly happens in Bodies whofe Skins are naturally cool by a fpare Diet, or a languid Motion of the Blood, or both.II. From the Table p. 258 it appears, that both Perfpiration and Urine are greater in the Afternoon than in the Morning, in the Day than in the Night. But as the Man from whom that Table was made, walked fome Hours every Day, and generally more in the Morning than in the Afternoon; we cannot from that Table determine thefe Difcharges, and confequently their Proportions to one another at different Times of the Day in Bodies which are at Reft. That I might be fatisfied of this, I took the Quantities of Perfpiration and Urine difcharged by two healthful Men B and D, in the feveral Hours of the Day for four Days together in very hot M m Weather,

274 A Treatije of the Weather, and with the mean Quantities of the Difcharges in thofe Hours, compofed the following Table.

Hours.	B		D	
	(eercip.	Urine.	Perfpi-	Urine.
- 6	I_{8}^{7}	0_{16}^{15}	2	
4	15	1	$1{ }_{5}^{2}$	1
8	2.	1	$1{ }^{1}$	$1{ }^{\frac{1}{5}}$
9	2	1_{6}^{1}	$1 \frac{4}{5}$	$1{ }^{3} \frac{3}{10}$
10	2	$\mathrm{I}_{1}{ }^{\frac{1}{1}}$	19	I^{-}
11	$1{ }^{3}$	I	\mathbf{I}_{5}^{2}	I
12	$2 \frac{3}{3}$	1	$1 \frac{4}{5}$	I
1	$2{ }^{\frac{1}{3}}$	${ }^{1}$	1_{2}^{18}	1
2	2	1	$1 \frac{1}{2}$	1
3	$3{ }^{\frac{1}{2}}$	$\mathrm{I}_{2}{ }^{\text {I }}$	2	1
4	$2 \frac{1}{3}$	2	$1 \frac{1}{2}$	$\mathrm{I}_{7} \frac{1}{1}$
5	$2{ }^{\frac{2}{3}}$	2	$1 \frac{4}{5}$	1
6	$2 \frac{2}{3}$	2	1	I
7		2	2	I
8	$2 \frac{1}{3}$	$2{ }^{\frac{1}{3}}$	2	
	$2 \frac{1}{3}$	$1{ }^{2}$	$1 \frac{1}{2}$	${ }^{1} \frac{1}{2}$
10	$2 \frac{1}{3}$	I_{3}^{2}	$1 \frac{1}{2}$	$1 \frac{1}{2}$

B took 86 Ounces of Food in a Day; and D only 63 : They both eat their Breakfaft

Animal OEconomy. 275

 Breakfaft at eight a Clock in the Morning, dined at two, and fupped at eight at Night. It is to be obferved, that the Numbers correfponding to the Hour 6 in the Morning, are the mean Quantities of Perfiration and Urine which were drawn off from the Blood in every Hour of the Night, taking one Hour with another.Setting afide Exercife, and fuppofing the natural Day to be divided into three equal Parts, Morning, Afternoon, and Night, and the Morning to begin at fix a Clock; the Quantities perfpired by B and D in the Morning, Afternoon, and Night, were nearly by this Table, 16, 20, 15, and 13, 14, 16; and the Quantities of Urine made by thefe Bodies in the fame Times, were nearly 9 , is $5,7 \frac{1}{2}$, and $8,8 \frac{1}{i}, 9$. The Proportions of Perfpiration to Urine in thefe Times, were 177, 133,200 , in B; $\mathrm{M} \mathrm{m}_{2}$ and

276 A Treatife of the
and $162,164,177$, in D. Hence we learn, that the Proportion of Perfpiration to Urine is greater in the Night when Bodies are at Reft, than it is in the Day-time ; that there is no great Difference in this Proportion in thefe Times, in Bodies which eat fparingly and drink but little Wine, which was the Cale of D; and that in Bodies which eat plentifully and drink Wine, this Proportion is often lefs in the Afternoon than it is in the Morning, which was the Cafe of B. Wine in moft Bodies increafes the Difcharge by Urine; and as that Difcharge increafes, the Proportion of Perfpiration to it will neceffarily leffen; unlefs Perfpiration be increafed in the fame Proportion as U rine is increafed, which I believe very feldom, if ever, happens. Hence we may judge of the Proportion of PerSpiration to Urine at different Times

Animal OEconomy. 277

 of the natural Day, in Bodies which are at Reft; and at the fame time fee, that notwithftanding the Inequalities of this Proportion in different Parts of the natural Day, the Proportion of Perfpiration to Urine in the whole natural Day, is nearly the fame at the fame Seafon of the Year in healthful Bodies; it was nearly 162 in B, and 168 in D.III. The Proportion of Perfpiration to Urine, is increafed by all thofe Exercifes which increafe the Motion of the Blood and warm the Skin. Two Men of nearly the fame Height and Weight walked a Mile in half an Hour, and in that Time each perlpired about $3 \frac{1}{2}$ Ounces, which is about three times as much as they ordinarily perfpire in the fame Time in the Heat of Summer without Exercife. This Degree of Exercife gave a glowing Warmth

278 A Treatife of the
to the Skin, but did not make them fweat, but would have caufed a gentle breathing Sweat, had it been continued much longer. The fame Men walked above two Miles in half an Hour, and in that Time one perfpired nine Ounces, and the other eight, which was about eight times as much as they ordinarily perfpire in the fame Time in the Heat of Summer without Exercife. This Degree of Exercife made them fweat profufely. A third Man, who was fat and much taller than either of the others, walked two Miles in half an Hour, and in that Time perfired thirteen Ounces and a half, which was : about nine times as much as his Summer's Perfpiration in the fame Time without Exercife. And a Boy feven Years old; who without Exercife perfired half an Ounce in half an Hour in the Heat of Summer, by walking at fuch

Animal OEconomy. 279

fuch a Rate as gave a gentle Warmth to his Skin, but did not make him fweat, perfpired about three times as much in the fame Time. At the Beginning of the Exercife of Walking I have obferved, that Urine has been increafed as well as Perfpiration; but on continuing the Exercife, Urine in a very little Time has decreafed again, and grown lefs than it was before the Exercife, by the large Difcharge which was made by the Skin. If we fuppofe the Quantity of Urine not to be leffened by Exercife, as it may not in Perfons who by Drink fupply the Lofs which is made by Perfpiration, then will the Proportion of Perfpiration to Urine be 6 to r , in Perfons who walk at fuch a Rate as to give a glowing Warmth to their Skins, but not to caufe Sweat, and 16 to 1 in Perfons who walk at fuch a Rate as to fweat profufely, on Sup-

280 A Treatife of the
Suppofition that the Proportion of Perfpiration to Urine is 2 to 1 in the Heat of Summer. The Exercife of Riding increafes Perfpiration, but neither fo fuddenly, nor in fo great a Degree, as the Exercife of Walking, as appears from the following Inftance. A healthful Man upwards of ninety Years of Age, who commonly without Exercife difcharged four or five times as much by Urine as he did by Perfpiration, obferved that in the Night, after riding feveral Hours the Day before, he always perfpired as much as he difcharged by Urine. In this Cafe therefore, Perfpiration to Urine was increafed by Riding in the Proportion of 4 or 5 to.I.
IV. The Proportion of Perfpiration to Urine in Bodies of different Ages will be greater or lefs, as the external Heat of the Body is greater

Animal OEconomy. 28 I

 greater or lefs : But the external Heat of the Body is lefs in old Bodies than it is in others : And therefore, the Proportion of Perfpiration to Urine will be lefs in old Bodies than it is in others. In the old Man above-mentioned, this Proportion was lefs than in Bodies in the Vigour of their Age in the Heat of Summer, in the Proportion of I to 8 or 10 .V. The Proportion of Perfpiration to Urine in Bodies nourifhed by different Kinds of Meats and Drinks will be greater or lefs, as thofe Meats and Drinks are fitted to warm or cool the Skin by warming or cooling the Blood, and increafing or leffening its Motion. As to Drinks, Water and watry Liquors drunk hot warm the Skin and increafe Perfpiration; and drunk cold they cool the Skin, and increafe U $\mathrm{N} n$ rine.

28 i A Treatife of the rine. Three or four Quarts of Chalybeate Waters will pafs off by Urine in many Bodies in lefs than three Hours Time. Wine and other fermented Liquors drunk cold and in large Quantities frequently pafs off very quick by Urine, but not altogether fo quick as cold Water ; and drunk hot they increafe Perfpiration. Water impregnated with Nitre is colder and more diuretick than plain Water. As to Meats, thofe which are dry and warming increale Perfpiration; and thofe which are moift and cooling increafe Urine. Ripe Apples increafe Perfiration, as appears from the following Inftance. The old Man a-bove-mentioned, whofe Perfpiration in the eighty-fixth Year of his Age, was not above $\frac{1}{4}$ th part of his Urine, by eating three Quarters of a Pound of mellow Apples at Night with Bread, brought his Perfpirati-

Animal OEconomy. $\quad 283$

 on to be nearly equal to his Urine, lefs only in the Proportion of 13 to 16 . That this Change in Perfpiration was owing to the Apples, appeared from hence, that on his leaving them off, his Perfpiration grew lefs, and returned to what it was before he began to eat them.From thefe Inftances it appears, that the Proportion of Perfpiration to Urine is increafed or leffened by Meats and Drinks, as they increafe or leffen the Heat and Motion of the Blood.

$$
F \quad I \quad N \quad I \quad S
$$

ERRATA.

Page 4. Line 2, 3. for, as often as there are phyfical Points, read, for every phyfical Point. p.8.l. 6. f. if, r. and. . p.Io. 1.20. f. the Place, T_{0} the Lole or Place. p. 14. 1.8. f. By, r. From. p.17.1.18. f. 12 to 17 , r. 17 to 12 . 2. 35.l.16. f. $\mathrm{H}+\mathrm{S}$. r. $\frac{\mathrm{H}+\mathrm{S}}{\mathrm{L}}$. 2.38, l.4, 5, 6. dele and the Capacities of the two Pipes are as the Capacities of the two Syftems. p. 46. l.12. f. the fubduplicate, r. the inverie fubduplicare. 1.4 . 1. 12.
 the Capacities of two correfponding Pipes, as the whole Capacities of the two Syftems. p. 79. f. $3 \frac{1}{2}$, r. $3 \frac{\text { T }}{3}$. 9. 93.l. 5, 6.f. Tremor, r. Tremors. p.145. l.7.f. Heart, r. Hearts. p. 183.l. I2. after Wind, add, A the Degree of Heat in the Wind. pi. 184. l.23. f. be different, r, be given. p. 227.l.13. f. Mo-on, t. Motion. p. 119.f. Cor. 4. r. Cor. 3. \$. 132 , 1 , ult, f. Prop. 12, r. Prop. 13.

Robinson
1732

[^0]: G

